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Abstract 

Mathematical reasoning can be considered to be the pursuit of a line of 
enquiry to produce assertions and develop an argument to reach and justify 
conclusions. This involves processes such as conjecturing, generalising and 
forming arguments. The pursuit of a line of mathematical reasoning is not a 
routine process and perseverance is required to overcome difficulties. There is 
a lack of research on pedagogy to foster children’s perseverance in 
mathematical reasoning, hence this study sought to answer the research 
question: how can primary teachers improve children’s perseverance in 
mathematical reasoning? 

The study took place in two year 6 classes in different English schools. The 
study group comprised eight children, purposively selected for their limited 
capacity to persevere in mathematical reasoning. An action research 
approach was used to develop and evaluate two interventions. Data relating to 
the children’s cognitive and affective responses and the focus of their 
attention, a conative component, were collected by observation and interview. 

Data analysis synthesised the children’s reasoning processes with their 
affective responses and their conative focus. The use of this tripartite 
psychological classification to analyse children’s mathematical reasoning 
offered a new approach to analysing the interplay between cognition and 
affect in mathematics learning and revealed the role that engagement and 
focus play in both restricting and enabling children’s perseverance in 
mathematical reasoning. 

The interventions comprised providing children with representations that could 
be used in a provisional way and embedding a focus on generalising and 
convincing in mathematics lessons. These enabled children to improve their 
perseverance in mathematical reasoning; they were able to strive to pursue a 
line of enquiry and progress from making trials and spotting patterns to 
generalising and forming convincing arguments. 

This study found that children were not necessarily aware of when they 
encountered a difficulty. This lack of cognisance impacted on their capacity to 
apply the self-regulatory actions needed to monitor and adapt their use of 
reasoning processes. One outcome of this was that they tended towards 
repetitious actions, in particular, creating multiple trials even when they had 
spotted and formed conjectures about patterns. Their perseverance in 
mathematical reasoning was further compromised by their enjoyment of 
repetitious actions. 

When the children engaged in activities involving reasoning, their common 
affective response was pleasure, even in instances when they demonstrated 
limited perseverance. However, when they were able to persevere in 
reasoning so that they generalised and formed convincing arguments, they 
expressed pride and satisfaction. They attributed these emotions to their 
improved mathematical understanding. The bi-directional interplay between 
children’s cognition and affect in mathematics is discussed in literature; 
however, the impact of children’s focus on their cognitive understanding and 
affective experience augments existing literature. 
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Chapter 1: Introduction 

1.1 The importance of mathematical reasoning 

The importance of reasoning in mathematics education has been widely argued. For 

example, Mueller et al. (2010) assert that reasoning is crucial in the formulation and 

justification of convincing mathematical arguments and Ball and Bass (2003a) consider 

mathematical reasoning to be a basic skill on which children’s use of mathematics is 

founded. Reasoning is a significant factor in enabling progress in mathematical learning; 

Askew et al. (1997, p.2) found that teachers who were able to achieve the greatest 

learning gains for children could be categorised as having a connectionist orientation, one 

aspect of which is “prob[ing] pupils' reasoning to help establish and emphasise 

connections”. 

Ball and Bass (2003a, p.28) make a connection between reasoning and the development 

of mathematical understanding, arguing that in the absence of reasoning, “mathematical 

understanding is meaningless”. This stance builds on the earlier, seminal work of Skemp 

(1989), who advocates prioritising relational or intelligent understanding over instrumental 

understanding or the memorisation of facts and procedures. Mathematics learning that is 

founded on instrumental rather than relational understanding can give rise to problems. 

For example, Bergqvist and Lithner (2012, p.252) argue that mathematics is often 

experienced as 

a large set of isolated, incomprehensible facts and procedures to be memorised and 

recalled for written tasks 

and that this is a significant cause of difficulty in learning mathematics. Similarly, Brown 

(2011, p.156) asserts that 

there is considerable evidence of many children and adults having their confidence and 

willingness to participate in mathematics damaged by being drilled in procedures the basis 

of which they don’t understand. 

Reasoning has an important role to play in the recall of procedures and facts; Ball and 

Bass (2003a) argue that it is reasoning rather than memory that enables the recall of 

knowledge, as the capacity to reason enables a child to reconstruct knowledge when 

needed. The capacity to reason is therefore a significant factor in children’s learning of 

mathematics. 

The importance of reasoning in developing mathematical understanding was reflected in 

the National Curriculum for Mathematics (DfE/QCA, 1999) that formed statutory policy in 

England from 2000 to 2014. In this document, reasoning had a prominent status across 
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the mathematics curriculum. It included dedicated learning objectives about reasoning, 

which delineated what children should be taught in relation to developing understanding 

within all mathematical topics; for example, within a topic on multiplication, children might 

reason why 6 multiplied by 8 gives the same product as 8 multiplied by 6. In spite of this 

emphasis, Brown (2010, p.15) laments that in practice, this was commonly interpreted by 

providing practical equipment or real-world examples, with few teachers having the 

“confidence” or “insight” to adopt investigative approaches. This suggests that teachers 

may have had difficulty in understanding the nature and value of mathematical reasoning. 

Two recent mathematics Ofsted reports (2008; 2012), based on inspections of over 500 

primary and secondary schools in England during the period in which the 1999 National 

Curriculum was statutory policy, validate the need for a policy focus on mathematical 

reasoning. Each emphasises the need for children to have rich opportunities to reason so 

that they can develop understanding. Both reports found that lessons that impacted most 

significantly on children’s mathematical understanding provided rich opportunities for 

children to reason. This was achieved in a number of ways, including providing activities 

in which reasoning was integral, for example activities involving problem solving or 

investigation (Ofsted, 2008), or asking questions that were designed to elicit reasoning 

(Ofsted, 2012). However, despite the policy focus on reasoning, both reports state that 

lessons rich in reasoning opportunities were not the norm; more typically, lessons focused 

on learning procedures and facts. Interestingly, whilst this approach does result in 

success in tests (Ofsted, 2012), Mueller et al. argue that (2010) children “disconnect 

content from its underlying concepts”. Hence, a procedural approach to mathematics does 

not enable children to make connections between aspects of mathematics nor develop 

mathematical understanding, and consequently Ofsted found that children 

were generally not confident when faced with unusual or new problems and struggled to 

express their reasoning. 

(2008, p.6) 

In England, a new National Curriculum became statutory policy in September 2014 

(Department for Education (DfE), 2013). In this, reasoning has a central position; one of 

the three high level aims is: 

To ensure that all pupils reason mathematically by following a line of enquiry, conjecturing 

relationships and generalisations, and developing an argument, justification or proof using 

mathematical language. 

(DfE, 2013, p.3) 

This articulates a conjectural approach to mathematical reasoning to create a convincing 

line of enquiry and to form generalisations. However, whilst this aim is stated at the 
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beginning of the National Curriculum Programmes of Study for Key Stages 1 and 2 (DfE, 

2013), reasoning is referred to in just one of the 229 statements that comprise the 

statutory requirements. Interpreting the aim of reasoning within statements that depict 

learning content but do not reference reasoning or re-emphasise the importance of 

reasoning, presents a challenge for generalist primary teachers in England. The lack of 

emphasis on reasoning throughout this policy raises concern that children may have fewer 

opportunities to develop mathematical reasoning since September 2014. 

Thus, whilst reasoning is considered to be significant in the learning of mathematics, it is 

an aspect of mathematics provision that primary teachers find difficult. In addition, recent 

changes in statutory policy have diminished the support for primary teachers to focus on 

developing children’s mathematical reasoning. 

1.2 Mathematical reasoning: difficulties observed in practice 

The experiences I have had across professional roles, within and beyond education, have 

led me to place value on mathematical reasoning. Hence, these potential difficulties in the 

teaching and learning of mathematical reasoning in England seem significant to me. 

I have been interested in mathematics throughout my working life and each role I have 

undertaken has contributed to and increased my interest in the subject. My first post-

graduate role was that of mechanical design engineer, applying mathematics and 

mathematical thinking to mechanical projects in the airport industry. Then, following study 

to gain a Post Graduate Certificate in Education, I worked as a generalist primary teacher, 

developing an increasing interest in fostering children’s mathematical thinking and their 

curiosity for mathematics. These roles led to a period working as a local authority 

mathematics consultant, leading professional development activities for practitioners. 

Much of this endeavour also involved fostering generalist primary teachers’ confidence in 

and enjoyment of mathematics. My current role, as primary mathematics education tutor 

at a higher education institution, has enabled me to deepen my understanding of primary 

mathematics education and to articulate my personal values in both the subject itself and 

the learning of it. Through my professional experiences, I believe that mathematics, and 

more specifically, mathematical reasoning, is crucial for all children to engage with 

successfully as it has an important contribution to make to their capacity to reason and 

think logically. 

During my professional roles in education and over more than two decades, I have 

noticed a recurring theme. Through dialogue with and observation of children, parents, 

teaching assistants, pre-service and in-service teachers, there appears to be a 

relationship between learning mathematics and an individual’s emotional and attitudinal, 
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or affective response, to this endeavour. The foundation for either strongly positive or 

negative attitudes and emotions towards mathematics typically seems to be rooted in the 

notion of getting the answers right; I have experienced many children and adults who take 

pleasure in achieving a page of right answers, and many more whose fear of not attaining 

this, or not attaining this at speed, seems to stifle their mathematical engagement. 

However, mathematics as a subject of right answers is not the mathematics that I have 

developed a passion for throughout my career. Mathematics for me is rooted in reasoning. 

Whilst there may be definitive answers to specific mathematical problems, it is the solving 

of these problems and the reasoning involved that makes the subject creative, imaginative 

and interesting. 

I have observed that creating opportunities for children to engage in and experience 

mathematical reasoning can be problematic, leading practitioners to seek further 

development in their subject and pedagogic knowledge. My current role includes teaching 

pre-service teachers to apply their developing understanding of mathematics education to 

create rich learning opportunities for children that emphasise reasoning; it also involves 

supporting in-service teachers in Masters level study and professional development 

programmes to understand and further develop their mathematics education pedagogy. A 

common question raised by pre-service teachers is: what is mathematical reasoning? This 

suggests some difficulty in understanding what characterises children’s mathematical 

reasoning and recognising how children behave when reasoning. This is echoed in my 

work with in-service teachers: two recent city-wide projects, founded on locally identified 

emic issues, focused on developing pedagogic strategies to foster children’s mathematical 

reasoning. Each had the additional intention that such a focus would simultaneously 

further develop the participating teachers’ subject knowledge about reasoning. 

1.3 The need for perseverance in mathematical reasoning 

Whilst some practitioners may find the teaching of mathematical reasoning difficult, 

engaging with mathematical reasoning is not straightforward for children, not least 

because of the relationship between the cognitive and affective domains in mathematics 

learning. In pursuing a line of reasoned enquiry, becoming stuck and having to change 

direction of thought or approach is common, and this can be accompanied by emotions 

such as puzzlement or bewilderment. These feelings can arise at an early stage in any 

mathematical engagement, when least is known about the problem. It seems that 

perseverance is required to overcome such cognitive difficulty and the associated 

feelings. 
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The idea of general learning perseverance has recently acquired attention in English 

primary schools and practitioners have drawn on two related research ideas: the concept 

of a growth mindset (Dweck, 2000) and theories about learning to learn (for example, 

Claxton, 2014). I have become increasingly aware that, in applying the theory of growth 

mindset and in supporting children to develop effective learning behaviours, teachers 

place value on children’s effort and persistence. This results in wall displays in schools, 

such as those in Figure 1.1, that advocate both effort and persistence; the first (partially 

obscured by a data cable) encourages the child to “push yourself” and to be “resilient” and 

the second encourages children to keep going despite difficulty. 

 

 

Figure 1.1: Examples of primary school learning behaviour displays 

In relation to persevering in mathematical reasoning, making an effort, pushing yourself 

and keeping going when things get difficult appear to be sound guidance for children. 

However, the application of these ideas also raised questions for me. How do you push 

yourself to keep going when things get difficult in mathematical reasoning? Is this 

characterised by a ‘try, try, try again dogged determination’? What if children apply 

maximum effort but this does not result in mathematical reasoning? Could this be counter-

productive, fostering a negative affective stance that diminishes the effort they are 

prepared to expend in future? This led me to the realisation that a focus on reasoning, 

and more particularly, perseverance in mathematical reasoning, is of value. 

Whilst I was particularly interested in the practices that primary teachers could adopt to 

enable children to persevere in mathematical reasoning, the nature of perseverance in 
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mathematical reasoning and pedagogies to develop this do not form part of theoretical, 

policy or practice literature. This led me to design a study with the following aims: 

1. To explore the nature of perseverance in mathematical reasoning 

2. To develop pedagogic approaches to enable children in primary schools to preserve in 

mathematical reasoning 

3. To generate new understandings about the development of primary school children’s 

perseverance in mathematical reasoning. 

1.4 The development of an opening conjecture 

My first step was to consider what I had already observed in my own practice that enabled 

perseverance in mathematical reasoning. 

I observed how my teaching approaches impacted on the extent to which a group of 

undergraduate students were able to persevere in mathematical reasoning and this led 

me to formulate an opening conjecture for my study. 

Over a period of four days, I taught and observed five undergraduate students engaging 

with mathematical reasoning, and noted how my teaching strategy seemed to impact on 

their perseverance in mathematical reasoning. The five students worked in primary 

schools as teaching assistants and three declared feelings of anxiety when engaging with 

mathematics. In spite of their intense and negative affective response to mathematics, I 

noted that all were able to think and reason mathematically and exhibit behaviours 

associated with this, such as formulating and testing conjectures. Furthermore, each 

demonstrated a high degree of curiosity and perseverance when engaged with such 

mathematical thinking. 

However, there were two occurrences when all five appeared unable to engage with 

mathematical reasoning and, moreover, appeared to experience some anxiety. The sole 

difference seemed to be the manner in which I facilitated their capacity to think 

provisionally. Throughout much of the four days, I had provided resources and 

representations that could be moved, ordered, sorted and adapted. Through representing 

and constructing thinking using representations in this provisional way, the students 

demonstrated their capacity to experiment, conjecture, test conjectures and generalise. 

On the two occasions where I observed exceptions to this, I had not provided, and the 

students had not used, any resources to physically represent their thinking; they had 

solely used symbolic representations (Bruner, 1966) in the form of written symbols and 

speech. 
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Following this experience, I hypothesised that representing thinking in a provisional way 

was a significant factor contributing to the students’ perseverance. My reasoning for this 

was as follows. 

The provisional use of representations had had an impact on the students’ mathematical 

engagement in terms of both their affective and cognitive responses. It enabled them to 

take emotional risks; they seemed more able to experiment, more able to treat their trials 

as fallible and less encumbered by a fear of being wrong. The provisional use of 

representations further enabled them to develop a deeper understanding of the 

mathematics with which they were engaged. They seemed able to take cognitive risks to 

try further examples that generated more information about a mathematical problem and 

to use these data to inform their next decision. Consequently, in those moments, they did 

not experience mathematical engagement in terms of right or wrong, but as a process to 

generate useful data to inform their understanding. This shift in their readiness to make 

trials and use the resulting information improved their capacity to reason and to form and 

test conjectures. The combination of affective and cognitive risk-taking and subsequent 

engagement with forming and testing conjectures enabled the students to persevere in 

their mathematical reasoning. The use of representations that supported provisional 

thinking seemed to enhance this perseverance. 

Building on this, I articulated my own reasoning in the form of a conjecture: 

If children use mathematical representations that enable thinking to be expressed 

provisionally then their capacity to take risks, form and test mathematical conjectures will 

increase. This will increase their levels of perseverance in mathematical reasoning. 

This reasoning formed a starting point for this project. 

In formulating the aims for the study (Section 1.3), I had made judgements about the 

extent of the students’ perseverance in mathematical reasoning, but what was the 

theoretical basis for this? Furthermore, I had postulated a potential causation between my 

pedagogic actions and the outcomes for the students’ perseverance in mathematical 

reasoning. In the next chapter, I examine the nature of mathematical reasoning, 

considering the role of affect, and define perseverance in mathematical reasoning with 

reference to literature. The chapter then explores how the notion of provisionality has 

been utilised in programming and considers other pedagogic approaches that enable 

children to reason mathematically. Lastly, I set out the overarching research question for 

this study and three sub-questions. 
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Chapter 2: Literature Review 

In this Chapter, I use a tripartite psychological model to understand mathematical 

reasoning and perseverance in mathematical reasoning. I first consider the nature of 

mathematical reasoning from both a cognitive and affective stance. Second, I locate 

perseverance in mathematical reasoning within the conative domain and use the 

characteristics of this domain to articulate the components of perseverance in 

mathematical reasoning. Hilgard (1980) argues that all mental activity, including learning, 

can be classified using this tripartite psychological classification, cognition, affection and 

conation. These domains can be used as lenses to understand children’s mathematical 

reasoning to “call attention to aspects that [may otherwise] be neglected” (Hilgard, 1980, 

p.116) and may help to guard against preference towards one or two aspects of the 

mental activity involved in mathematical reasoning. 

I next examine existing knowledge of pedagogic approaches that enable children to 

reason mathematically; this understanding is requisite to developing approaches that 

improve children’s perseverance in mathematical reasoning. 

Finally, I summarise the implications of the examination of existing literature on the design 

of this study and analysis of its findings, and frame the research questions. 

2.1 Mathematical reasoning: the cognitive domain 

Mathematical reasoning and problem solving form the focus of two of the three aims of the 

National Curriculum (Department for Education (DfE), 2013) for mathematics in England. 

Whilst not synonymous, they are closely related; reasoning forms a significant aspect of 

problem solving, as noted in Ofsted’s inspection summary report and NRICH’s guidance 

materials for teachers: 

In outstanding lessons, the teachers […] made conscious efforts to foster a spirit of 

enquiry, developing pupils’ reasoning skills through approaches that saw problem-solving 

and investigation as integral to learning mathematics. 

(Ofsted, 2008, p.12) 

When faced with a mathematical challenge, reasoning helps us to make use of relevant 

prior knowledge such as how to tackle this 'type' of problem. 

(NRICH Primary Team, 2014a) 

Francisco and Maher (2005, p.362) argue that mathematical reasoning is integral to 

problem solving because the latter involves children in cognitive reasoning processes 

such as exploring patterns, making and testing conjectures, and explaining and justifying 

their reasoning. 



 24 

2.1.1 Defining mathematical reasoning 

Whilst the importance of mathematical reasoning (Section 1.1) and its relationship with 

mathematical problem solving is widely argued in literature, the meaning of mathematical 

reasoning is not always clear to generalist primary teachers (Section 1.2); Reid (2002) 

argues the need for researchers in the field of mathematics education to clarify their 

understanding of the term mathematical reasoning. 

Mathematical reasoning can be considered to include deductive approaches that lead to 

formal mathematical proofs and inductive approaches that facilitate the development of 

knowledge; Pólya (1959) broadly interprets these two types as demonstrative and 

plausible reasoning respectively. Lithner (2008, p.257) recognises the value of inductive 

approaches and interprets reasoning as: 

the line of thought adopted to produce assertions and reach conclusions in task solving. It 

is not necessarily based on formal logic, thus not restricted to proof, and may even be 

incorrect as long as there are some kinds of sensible (to the reasoner) reasons backing it. 

For this study, I have drawn on both Pólya’s (1959, p.7) “plausible reasoning” and 

Lithner’s (2008, p.257) interpretation of mathematical reasoning. I have also drawn on 

statutory policy in England and the description given in the National Curriculum (DfE, 

2013, p.3; cited in Section 1.1) to form the following definition of mathematical reasoning 

for this study: 

Mathematical reasoning is the pursuit of a line of enquiry to produce assertions and 

develop an argument to reach and justify conclusions. 

2.1.2 Processes in mathematical reasoning 

Mason et al. (2010, p.3) argue that “there are specific processes which aid mathematical 

thinking”, but what are these processes and how might they facilitate the pursuit of a line 

of mathematical enquiry, in which assertions are produced, arguments developed and 

conclusions are reached and justified? This section explores a suite of mathematical 

processes comprising specialising, pattern spotting, forming, testing and adjusting 

conjectures, generalising and forming convincing arguments, and how these can be linked 

to facilitate the construction of mathematical reasoning. 

Lakatos (1963, p.139) describes the pursuit of a line of enquiry as the formation, testing 

and revising of “naïve” conjectures leading to the formation of a theorem or generalisation. 

Mason et al. (2010, p.58) define a conjecture as a hypothesis, or mathematical statement 

which seems “reasonable but whose truth has not been established”. The capacity to form 

and test conjectures is, Haylock (2014) argues, fundamental to mathematical reasoning. 
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Two further processes facilitate the formation and testing of conjectures: specialising and 

pattern spotting. The awareness of pattern is widely argued as being of central importance 

in mathematics generally (for example, Mulligan and Mitchelmore, 2009; Orton, 1999; 

Stewart, 2001; Warren, 2005) and highly significant in the process of formulating and 

articulating conjectures. To form a conjecture, the reasoner needs to infer a general rule 

from specific examples, and spotting patterns is central to this. 

To create a situation in which patterns can emerge, mathematical data need to be 

created. Initially, data generation is characterised by trying a few arbitrary examples, what 

Mason et al. (2010, p.15) refer to as “specializing randomly”. This facilitates understanding 

and getting a feel for the problem at a stage when little is known. However, for patterns to 

emerge, a more systematic approach to data generation is needed. Mason et al. (2010) 

advocate the use of systematic specialisation; a system is applied to create ordered data, 

for example fixing one variable whilst manipulating others. The main aim of such a system 

is to illuminate patterns and relationships from which conjectures can be formulated and to 

lay the foundations for generalisation. Posamentier and Krulik (2009) argue that 

organising and re-organising data that have already been created, for example through 

initial random specialisation, can be a useful strategy to support the emergence of pattern. 

The process of testing a conjecture requires “specializing artfully” (Mason et al., 2010, 

p.15); particular numbers or examples are specifically, or artfully, chosen with the explicit 

purpose of testing the validity of a conjecture and exploring its limits. This facilitates 

generalisation and formation of statements about what is happening and the conditions 

that need to be in place for this. Mason et al. (2010) identify two forms of generalisation: 

empirical and structural. Empirical generalisation arises from noting the common patterns 

emerging from viewing many examples or trials; that is “seeing the general through the 

particular” (Mason et al., 2010, p.232). For example, in the primary school context, a child 

may generalise that the sum of an odd number and an even number results in an odd 

total, by noting the common patterns in many calculations in the form odd plus even 

number. Structural generalisation is the result of using one or few trials to recognise 

relationships and the structures that underpin this. In the case of summing an odd and an 

even number, a child may create one or two examples, then recognise that as an even 

number is divisible by 2 with no remainder, and an odd number has a remainder of 1 

following division by 2, combining an odd and even number will always result in a number, 

that when divided by 2, has a remainder of 1. Mason et al. (2010) further argue that 

consideration of why a generalisation is likely to be true, or justifying or convincing, is a 

significant aspect of generalising. In this example, the child might form a convincing 

argument using practical equipment to support her explanations (Figure 2.1). 
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Figure 2.1: Potential child's argument generalising about the properties resulting from combining odd and 
even numbers 

Research into the impact of pattern and structure on mathematical understanding (for 

example, Mason et al., 2009; Mulligan and Mitchelmore, 2009; 2012) highlights the 

importance of not only recognising and articulating patterns but also understanding the 

relationship between patterns and their underlying mathematical structures. It seems that 

understanding mathematical structure is significant in constructing reasoning about why 

patterns occur and, hence, why a conjecture might be true. Mason et al. (2010) include 

such justification as an important part of the cycle of forming, testing and establishing the 

truth of conjectures and hence generalising. 

Stylianides and Stylianides (2006) assert that there is an important connection between 

children’s pattern spotting and conjecturing and their subsequent formation of 

mathematical arguments. They argue that for children in elementary school (equivalent to 

primary school in England), mathematical arguments “may or may not qualify as proofs” 

(Stylianides and Stylianides, 2006, p.203). Mason et al. (2010, p.87) similarly argue that 

there are levels of mathematical argument that do not necessarily constitute a formal 

mathematical proof; first convince “yourself”, then “a friend” and finally “a sceptic”. Lithner 

(2008, p.257) also asserts that in the primary school context, “sensible” reasons are 

required to support mathematical assertions rather than formal logic or proof. He 

advocates that children’s arguments are 

anchor[ed]…in relevant mathematical properties of the components one is reasoning 

about. 

(Lithner, 2008, p.261) 

Thus, in Figure 2.1, the argument is anchored in the property that even numbers are 

divisible by 2 with no remainder and odd numbers have a remainder of 1 following division 

by 2. Bergqvist and Lither (2012), drawing on the work of Toulmin, reason that to reach an 

The totals must be odd because when you make the total from 2s, there is always one 
left over. So for 6+7, the total is filled up with 2s but there is 1 left over. But when you 

add two even numbers like 6+8, or two odd numbers like 5+7, you can make the 
whole total with 2s with none left over — so these totals are even. 
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assertion, mathematical arguments need not only to be anchored in mathematical 

properties relevant to the data, but also that they require a warrant, specifically based in 

the data, to support the conclusion. 

The warrant supports the conclusion by using the data to register the legitimacy of the 

deductive step taken. 

(Bergqvist and Lithner, 2012, p.253) 

In Figure 2.1, the warrant is evident in the way specific numerical examples are 

represented and used. Stylianides and Stylianides (2006, p.5) succinctly articulate the 

value of pattern spotting and conjecturing in the formation of a mathematical argument: 

Patterns can give rise to conjectures, which in turn motivate the development of arguments 

that may or may not qualify as proofs [original emphasis]. 

However, Brown and Walter (2005) assert that there is more to mathematics than forming 

proofs. They argue that there is value in evaluating the significance of a concept that has 

already been learned, in seeing new connections and finding the representations that 

enable these to occur. This is significant in fostering the development of a relational 

understanding (Skemp, 1971) and in reasoning mathematically to “follow a line of enquiry” 

(DfE, 2013, p.3). Brown and Walter (2005) propose that mathematicians’ training, to take 

the given for granted in the pursuit of a proof, inhibits these mathematically worthwhile 

activities. To facilitate “go[ing] beyond accepting the given”, Brown and Walter (2005, 

p.35) propose a scheme called “What-If-Not?”. First, all the attributes of a mathematical 

problem are listed. Second, the question “what if not?” is applied to each attribute and 

alternatives are sought. Third, one of the new attributes is selected and a new problem is 

formed and finally, this new problem is explored. The aim of this scheme is not to impose 

a step-wise routine, rather to inspire “the spirit of investigation and free inquiry” (Brown 

and Walter, 2005, p.65). This scheme has dual significance; it fosters an inquiry approach 

and facilitates deeper understanding about the original problem that can lead to the 

formation of convincing arguments. 

Hannula (2011b) describes two temporal aspects, state and trait, that can be applied to 

the three psychological domains. The state aspect of cognition recognises transient or 

fluctuating cognition during mathematical activity, and trait refers to the more stable 

mathematical knowledge and understandings, developed over time. The reasoning 

processes discussed in this section can be considered to be what Hannula (2011b, p.45) 

refers to as “thoughts in mind”, the state aspect of cognition. 
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2.1.3 Implications for this study 

There is a notable degree of consensus in research literature regarding the mathematical 

reasoning processes involved in pursuing a line of enquiry; this is reflected in the 

reasoning aim of the mathematics National Curriculum (DfE, 2013), discussed in Section 

1.1. Drawing on the work of Mason et al. (2010) and Stylianides and Stylianides (2006), I 

identified five key cognitive processes that children engage in during mathematical 

reasoning: specialising (making trials), spotting patterns and relationships, conjecturing, 

generalising and convincing. Figure 2.2 illustrates a potential pathway using these 

processes to pursue a line of mathematical enquiry that produces assertions and reaches 

conclusions. 

 

Figure 2.2: Potential pathway showing reasoning processes in pursuit of line of mathematical reasoning 

The awareness that these reasoning processes can be considered as the state, rather 

than trait aspect of cognition has implications for the location of the data collected in this 

research. This informed the research methodology and the collection and analysis of data 

pertaining to children’s mathematical reasoning. 

2.2 Mathematical reasoning: the affective domain 

In their works on mathematical thinking, Mason et al. (1982; 2010) recognise the 

importance of the affective domain in problem solving and, notably, the role of emotions in 

cognition. They celebrate the state of “being stuck” (Mason et al., 2010, p.45) when 

engaged in mathematical thinking because of the opportunities it presents for learning. 

However, they also acknowledge the feelings of frustration, tension and panic associated 

with being stuck and argue that it is important to develop awareness of such feelings as 

this facilitates action: 

The act of expressing my feelings helps to distance me from my state of being stuck. It 

frees me from incapacitating emotions and reminds me of actions that I can take. 

(Mason et al., 2010, p.45) 

However, the expression of feelings relating to mathematical learning and engagement 

does not guarantee liberty from debilitating emotions. There is considerable research 

evidence (for example Ashcraft, 2002; Hoffman, 2010) that mathematics is a source of 

negativity, anxiety and fear and that these responses can lead to individuals avoiding 

Form convincing 
argument Generalise Specialise Spot 

pattern 
Form, test, 

adjust conjecture 
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activities that might “require mathematical reasoning” (Johnston-Wilder and Lee, 2010, 

p.1). 

Given the potential powerful influence that emotion has on the individual’s experience of 

mathematical reasoning, it is important to analyse children’s mathematical reasoning from 

an affective stance with particular reference to emotion. 

2.2.1 The nature of the affective domain in mathematics learning 

Following the seminal Taxonomy of Educational Objectives for the cognitive domain 

(Bloom et al., 1956), Krathwohl, Bloom and Masia endeavoured to define a parallel 

taxonomy for the affective domain (1964). However, they found affect to be much more 

difficult to classify than cognition and, ironically, acknowledged their lack of satisfaction 

with the work. In the following decades psychologists and educationalists continued to find 

the affective domain difficult to define. This was not least because of the inconsistent 

interpretation of terminology and various representations of affect as well as the differing 

methodological approaches favoured by each specialism (Hannula, 2011b; Hannula et al., 

2004; McLeod, 1992). However, in the last 25 years, there has been a drive in the field of 

mathematics education to develop an increasingly coherent and shared understanding of 

the affective domain. McLeod (1992) offers a model of affect in mathematics education 

that is represented by attitudes, beliefs and emotions; these components have been 

utilised in much of the subsequent research on affect in mathematics education. 

There is limited agreement on the definition of an emotion or how many basic emotions 

there are; however, emotions are widely considered to be an elemental component of 

affect (G. Goldin, 2000; Hannula et al., 2004; McLeod, 1992). Emotional responses are 

provoked when there is an interruption to the schema or anticipated behaviour (Mandler, 

1989). In relation to mathematics learning, Skemp (1971) defines a schema as the 

psychological term for a complex conceptual or mental structure. The two functions of 

mathematical schema are to integrate existing knowledge or to offer a mental structure to 

assimilate new knowledge. The latter may necessitate adaptations to the schema and 

these interruptions to mental structures can give rise to transient emotions. 

As discussed in Section 2.1.2, affect has both state and trait aspects. Hannula notes that 

the 

state and trait aspects of affect towards mathematics have been implicitly present in most 

of the research done. However, these two temporal aspects have seldom been addressed 

explicitly. 

(2011b, p.44) 
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Goldin (2004, p.112) presents a description that captures the experience of emotions as 

rapidly-changing states of feeling experienced during mathematical (or other) activity. 

This concurs with McLeod’s (1992) view that emotions are the most intense and flexible of 

the affective characteristics and is consistent with Mason et al.’s (2010) observation that 

the experience of changing emotions is significant in mathematical exploration. Whilst 

Goldin, (2004), McLeod (1992) and Debellis and Goldin (2006) assert that emotions are 

transient, rapidly changing states, and attitudes are their more stable sibling, Hannula 

argues that emotions have both a rapidly fluctuating “state” aspect and a more stable 

“trait” or emotional disposition aspect: 

Although the emotions of a student may fluctuate and change rapidly during problem 

solving, students also have very stable patterns of emotional reactions. By this we mean 

that each individual has typical emotional reactions to typical situations in the mathematics 

classroom. 

(2011b, p.45) 

Goldin (2000, p.210) does, however, articulate the trait aspect of emotion using the 

terminology “global affect”; he argues that global affect results from repeatedly 

experiencing similar emotions in mathematics learning. Here the inconsistent use of 

terminology to articulate affective concepts in the field of mathematics education is 

evident. Goldin (2000) sets out a representation of emotional pathways that could be 

experienced when engaged in mathematical reasoning in a problem-solving context. He 

describes the transient emotions experienced during mathematical problem solving as 

local affect (this term is consistent with Hannula’s (2011b) state aspect of emotion) and 

the linking of a sequence of emotions during problem solving as generating affective 

pathways. Goldin (2000) presents two commonly experienced, idealised, affective 

pathways. Both pathways share a common starting sequence in which students 

experience curiosity and puzzlement as they begin to engage with a problem. This is 

followed by bewilderment as they seek effective problem solving strategies. At the initial 

stages of mathematical problem solving, little is known and whilst Rowland (1995, p.69) 

argues that mathematical uncertainty “is (or should be) welcome and explicit”, it is likely 

that it contributes to feelings of puzzlement and bewilderment. At this point, the two 

affective pathways split. In one pathway the student chooses an appropriate strategy and 

this leads to feelings of encouragement. Further success results in pleasure and even 

moments of elation as new insights are discovered. Finally, students experience 

satisfaction in both the successful outcome and, importantly, the approach taken. 

Lambdin (2003, p.8) argues that such satisfaction arises from the deep understanding 
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acquired through successful reasoning in mathematical problem solving; “to understand 

something is […] intellectually satisfying”. 

However, in Goldin’s (2000) alternative pathway, the student’s bewilderment does not 

lead to choosing an effective strategy and frustration sets in. If a way forward is not found 

at this point, the emotions become increasingly negative, and anxiety, fear and even 

despair are experienced. Goldin (2000) argues that repeated experiences of one pathway 

result in the formation of an individual’s general affective response (or emotional trait) to 

mathematical problem solving. This then sets expectations for future experiences, which 

impact on the manner in which individuals respond to uncomfortable emotions such as 

bewilderment and frustration. It also impacts on an individual’s expectation that pleasure, 

elation and satisfaction are feelings that can arise from mathematical problem solving. 

2.2.2 Two affective constructs: mathematical intimacy and mathematical 
integrity 

Debellis and Goldin (2006) explore the impact of emotions through two affective 

constructs: mathematical intimacy and mathematical integrity. Mathematical intimacy 

describes an individual’s potentially “deep, vulnerable emotional engagement” (2006, 

p.132) with mathematics which also relates to an individual’s self-worth. Indicators of 

mathematical intimacy include a child positioning herself very close to or distancing 

herself from the work, being so consumed by the engagement with the activity that other 

stimuli, such as the teacher calling her name, are ignored. The high levels of engagement 

and concentration indicated here resonate with Csikszentmihalyi’s (2008, p.4) notion of 

flow; the state of being “so involved in an activity that nothing else seems to matter”. 

Debellis and Goldin (2006, p.138) argue that intimate mathematical experiences can give 

rise to emotions such as excitement or deep satisfaction. However, mathematical intimacy 

can fluctuate and does not necessarily remain positive; an individual can be betrayed by 

former intimacy through experiencing negative responses from respected individuals or 

frustration during mathematical exploration. Debellis and Goldin (2006, p.138) reason that 

coping with swings in mathematical intimacy is a “meta-affective capability”, the 

development of which characterises successful problem solvers. 

Debellis and Goldin use the term mathematical integrity (2006, p.138) to describe an 

individual’s affective stance in relation to: the correctness of the mathematical solution; 

satisfaction in the solution; having the relevant and sufficient mathematical understanding 

and the respect commanded by mathematical achievement. They identify three important 

components: a child’s capacity to recognise that she holds insufficient mathematical 

understanding or that she has not made the desired achievements; her decision to act on 
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this recognition; and the kind of action she takes. Debellis and Goldin exemplify the 

construct by analysing the responses of a nine-year-old child to a mathematical task 

involving generalising patterns of arrangements of odd numbers of dots. The child 

successfully explains the 10th total but cannot correctly identify or explain the 50th total. 

She realises that she is not good at this, proposes and tries ten alternative strategies: the 

perseverance demonstrated in this approach, alongside her identification of errors and 

expressions of a strong desire to get the problem right, are indicative of the child’s 

mathematical integrity. Debellis and Goldin (2006, p.143) argue that: 

This establishes an affective posture allowing her to continue working, even when making 

little mathematical progress. 

What is also significant in this vignette in relation to my study is the high degree of 

perseverance displayed by the child in her repeated attempts to revise her approach to 

establish a solution to the problem. Debellis and Goldin (2006) concede that mathematical 

integrity requires further elucidation, for example, how to characterise mathematical 

integrity structures consistently in different problem solving situations. 

2.2.3 Affect in mathematics related to age 

Trends in International Mathematics and Science Study (TIMSS) is a comparative 

international assessment of mathematics and science at 4th and 8th grades (years 5 and 

9 in England), conducted on a four yearly cycle. One of the attitudinal scales used in the 

2011 TIMSS report (Ina et al., 2012) captured data on children’s self-confidence in 

mathematics. Whilst my study does not focus on self-confidence, this scale was of interest 

as it recognised the relationship between children’s confidence and learning in 

mathematics, and in particular the relationship between confidence and persistence in 

mathematics: 

The Student Confidence and Mathematics scale assesses students’ self-confidence or 

self-concept in their ability to learn mathematics. A strong self-concept encourages 

students to engage with the instruction and show persistence, effort, and attentiveness. 

(Ina et al., 2012, p.327) 

The data from this study relating to the Student Confidence and Mathematics scale show 

that in England, 19% of children in year 5 (ages 9–10) were found to be ‘not confident’ in 

mathematics and this increased to 32% in year 9 (ages 13–14). There was a similar trend 

across the age ranges in children found to be ‘confident’ in mathematics; 33% of children 

in year 5 in England were ‘confident’ and this decreased to 16% in year 9. The overall 

decrease in confidence in mathematics between years 5 and 9 in England is also 

reflected in the international averages (Appendix 2.1 shows extracts of these data). 
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Drawing on the correlation that Ina et al. (2012) make between students’ self-confidence 

and the persistence they show in learning mathematics, children’s drop in confidence from 

year 5 to year 9 reflects a similar drop in persistence. The reduction in children’s 

confidence and persistence may begin to take place during years 5 and 6, the two years 

contributing to the TIMSS that form part of the primary phase of education in England. 

This led me to consider conducting the research with children aged 10–11 in year 6 

(discussed in Sections 2.2.3 and 3.2.5). 

I have noted that significant evidence exists that mathematics is a source of negative 

affect and that this can result in anxiety. Hopko et al. (2002, p.248) report that 

mathematics anxiety is characterized by feelings of apprehension and tension concerning 

manipulation of numbers and completion of mathematical problems in various contexts. 

Skemp (1971) attributed mathematics anxiety to teaching mathematics for instrumental 

rather than relational understanding. Finlayson (2014) similarly argues that teaching 

approaches that focus on instruction over understanding of process contribute to 

mathematics anxiety. In its more severe form, Aschraft and Moore (2009, p.197) report 

that mathematics anxiety can result in “overwhelming emotional (and psychological) 

disruption”. They found that whilst mathematics anxiety does not appear to manifest in 

children in the early phase of primary education, by years 5 and 6, children begin to 

indicate a degree of apprehension. Whilst this can occur in the mathematics classroom 

generally, it certainly manifests when children are asked to solve a mathematical problem 

(Ashcraft and Moore, 2009). This decrease in affective response from years 5 and 6, adds 

further weight to a focus on the older age groups in the primary setting for my study. 

2.2.4 Implication for this study 

Given the reported a decrease in affect in mathematics from year 5 to year 9, and year 5 

to year 6 respectively, and as my study sought to focus on the primary age phase, year 6 

appeared to be an appropriate year group within which to focus the study. 

2.3 Interplay and synergy between cognition and affect 

McLeod (1982, p.575) in his seminal writing on affect in mathematics education, 

highlighted that “affect plays a significant role in mathematics learning and instruction” and 

called for researchers to focus on affective factors alongside cognition instruction. 

However, whilst developments have been made in articulating affective constructs (for 

example DeBellis and Goldin, 2006; Hannula, 2011b; Malmivuori, 2006), understanding of 

the interplay between cognition and affect requires further research. For example, 

Hannula (2011, p.35) describes the interaction between cognition and affect in the context 
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of mathematical problem solving and higher order thinking processes, as “intrinsically 

interwoven” but laments that “we do not yet understand these processes well enough”. Di 

Martino and Zan (2013a) argue that the interplay between cognition and affect in 

mathematics learning is both deep and bi-directional; cognition impacts on emotions and 

vice versa. For example, emotions impact on cognition by “bias[ing] attention and memory 

and activating action tendencies” (Hannula, 2002, p.28) and conversely, Mandler (1984) 

argues that cognitive analysis in conjunction with physiological responses results in 

emotions. 

In 2015, I attended the 9th Congress of European Research in Mathematics Education 

(CERME9) and presented a paper detailing the findings from my pilot study (Section 

3.2.1) (Barnes, 2015, see Appendix 2.2) in Thematic Working Group 8 (TWG8), Affect and 

Mathematical Thinking. Liljedahl, one of the leaders of TWG8, noted the shift in the 

group’s focus in comparison to previous Congresses towards the use of affective 

structures in instructional design and implementation; my research was part of this new 

trend towards the use of affective constructs in vivo. The group leaders summarised the 

discussions in the working group as “particularly stimulating” (Di Martino et al., 2015, 

p.1106) because of the emergence of new research trends. Di Martino et al. (2015) 

recommend that more research should focus on the findings to date relating to 

mathematics cognition and affect, and in particular on the implications for class based 

interventions, curriculum development and teacher education. 

My study pursues this recommendation, by using the knowledge of affective structures, 

developed since McLeod’s (1982) seminal work, to inform teacher pedagogy. Moreover, 

given the limited understanding of the interplay between affect and cognition, it also 

presents and opportunity to deepen understanding of this synergy in vivo. 

2.3.1 Implication for this study 

My study sought to apply the current understanding of the affective domain and the 

interplay between cognition and affect during mathematics learning to class-based 

research, and this is congruent with the recommendation of CERME9, TWG8 (Di Martino 

et al., 2015). I sought to study this interplay whilst children were learning mathematics; 

consequently, the state rather than the trait aspect of affect formed the affective focus. 

This raised a question for my research: 

To what extent and how do the interventions impact on the interplay between the children’s 

cognition and affect? 
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2.4 Perseverance in mathematical reasoning 

2.4.1 The need for perseverance in mathematical reasoning 

In Section 1.1, I argued that mathematical reasoning was essential to children’s 

mathematics learning and that this was widely recognised in research and policy. 

However, the development of mathematical reasoning is not straightforward; reasoning 

processes can trace a “zig-zag” route (Lakatos, 1976, p.42) which necessitates repeated 

decision-making and can involve experiences of becoming and overcoming being “stuck” 

(Mason et al., 2010, p.45). Navigating each of these situations requires perseverance; 

Williams asserts that when mathematical “situations are unfamiliar and a clear pathway is 

not apparent” (2014, p.30) perseverance is needed, and Johnston-Wilder and Lee argue 

(2010) that overcoming difficulties in mathematics necessitates perseverance. But what is 

the nature of the difficulties that children encounter during mathematical reasoning? 

Ellis’s (2007) analysis of Cobb and Steffe’s (1983) study of seven children (aged twelve) 

identified two points in the reasoning process when children commonly became stuck. 

First, difficulty arises in utilising the patterns they have spotted as a platform for 

generalisation; Ellis (2007, p.195) argues that whilst children may 

recognise multiple patterns, they may not attend to those that are algebraically useful or 

generalizable. 

Second, difficulty arises in creating convincing arguments as to why a generalisation 

might be true; 

when students are able to generalize a pattern or rule, few are able to explain why it 

occurs. 

(Ellis, 2007, p.195) 

Reid’s (2002) study of the cases of three children in Grade 5 (equivalent to year 6 in 

England) found that the children’s reasoning was only partly mathematical. He argues that 

the missing element, or difficulty, was that the children did not expect to explain the 

reasons why a mathematical pattern or regularity occurs. Reid (2002, p.26) notes that this 

is not a criticism of the children or their teacher but that it is “perhaps not reasonable to 

expect that” children of this age had formed the understanding of what makes reasoning 

mathematical. These two studies suggest that there are three points of potential difficulty 

for children in pursuing a line of mathematical reasoning: the transitions from pattern 

spotting to generalising; from generalising to convincing; and the expectation to seek 

justifications through forming convincing mathematical arguments about why a 

generalisation might be true. 
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Whilst Ellis (2007) and Reid (2002) identify cognitive difficulties in reasoning, the 

difficulties referred to by Johnston-Wilder and Lee (2010) could be affective. In Section 

2.2.3, I reported Ashcraft and Moore’s (2009) findings that some children in years 5 and 6 

begin to report apprehension when solving mathematical problems in non-test conditions 

in the classroom. They suggest that, in mathematically anxious children, anxiety is 

aroused to a minor degree during routine mathematical activities in lessons and almost 

certainly when asked to solve mathematical problems. This leads to what they term as an 

affective drop, or decline in performance resulting from anxiety. They assert that 

it seems more likely than not that the math-anxious student learns somewhat less in the 

math classroom than the non-anxious student. 

(Ashcraft and Moore, 2009, p.204) 

This suggests that children who experience mathematics anxiety are consequently more 

vulnerable to experiencing difficulties in mathematical reasoning than their non-anxious 

peers for two reasons. First, because of the problem solving contexts from which 

reasoning tasks arise and second, the resulting affective drop that the child experiences. 

Mathematics anxiety is consequently a cause of potential difficulties in mathematical 

reasoning. 

However, experiencing difficulties is not an unwelcome by-product of mathematics 

learning but a necessary component; Hiebert (2003) highlights the important role that 

struggle plays in constructing mathematical understanding. He argues that mathematics 

should be problematic for children, acknowledging that this stance is counter to the 

prevailing orthodoxy, that teachers are “encouraged to make mathematics less 

problematic for students” (2003, p.54, original emphasis). His stance is that 

all students need to struggle with challenging problems to learn mathematics and to 

understand it deeply. 

(Hiebert, 2003, p.54) 

Hence, when constructing mathematical reasoning, children encounter difficulties that are 

cognitive in nature and they might encounter difficulties of an affective nature, but struggle 

should be part of this experience. Perseverance is required to overcome the cognitive and 

affective difficulties and the necessary struggle encountered during mathematical 

reasoning. 

2.4.2 Perseverance in mathematical reasoning: a conative construct 

I have not found a definition of the construct ‘perseverance in mathematical reasoning’ in 

literature and hence, have sought to explore and formulate this here. The introduction of 

this new term reflects Hannula et al.’s (2017) thinking that as new concepts emerge, 
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terminology that builds on the critical analysis of previous research is needed. Drawing on 

the ideas that I presented at CERME9 relating to perseverance in mathematical 

reasoning, they state that 

It is important to keep a way open for new concepts to emerge […]. It seems reasonable 

that we need specific terms, for example […] “perseverance” (Barnes, 2015). 

(Hannula et al., 2017, p.10) 

Conation is the third of the tri-partite psychological domains. It is, as Huitt and Cain (2005) 

assert, the proactive aspect of behaviour that includes volition, intention and planning, but 

also perseverance and the goal oriented, striving part of motivation. In this section I 

discuss why I have positioned perseverance within the conative domain and as a state 

rather than trait construct. I begin by examining definitions of perseverance in 

mathematical problem solving, an aspect of mathematics that is closely related to 

reasoning (discussed in Section 2.1). 

Williams (2014, p.9) interprets perseverance in problem solving as 

finding ways to proceed towards successes when situations are unfamiliar and a clear 

pathway is not apparent. 

Thom and Pirie (2002, p.2) similarly argue that 

In the context of mathematical problem solving, perseverance refers to the student’s sense 

[…] in knowing when to continue with, and not give up too soon on a chosen strategy or 

action, and at the same time, knowing when to abandon a particular strategy or action in 

the search of a more effective or useful one. 

Two ideas are implicit in these definitions: persistence and keeping going in spite of 

difficulty, and exercising self-regulation. These can be categorised as conative 

characteristics. The perseverance aspect of conation is “about staying power and survival” 

(Tait-McCutcheon, 2008, p.507) in order to overcome difficulty or delayed success in 

striving for and achieving goals. Thus, I argue that perseverance in mathematical problem 

solving is a conative construct and that the closely related perseverance in mathematical 

reasoning shares these conative characteristics. 

As in the cognitive and affective domains, there are state and trait aspects of conation. 

For example, Hannula (2011b) articulates both trait and state aspects of motivation; trait 

reflects needs, values and mathematical intentions, whilst state refers to the immediate, 

active mathematical goals. Johnston-Wilder et al.’s (2013, p.2326) description of 

mathematical resilience: 
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a positive stance towards mathematics that enables learners to develop approaches to 

mathematical learning which enable them to overcome the barriers and setbacks that can 

be part of learning mathematics 

and in particular their use of the term stance, seems to position the construct as a trait that 

may be developed over time. As my research focused on improving children’s 

perseverance in mathematical reasoning in the context of their engagement with one 

activity, the state aspect of conation, with its emphasis on active goals and the 

development of perseverance in mathematical reasoning during single mathematical 

activities, was the most pertinent. 

I formulated the following definition of perseverance in mathematical reasoning for this 

research: 

Perseverance in mathematical reasoning is striving to pursue a line of mathematical 

reasoning, during a mathematical activity, despite difficulty or delay in achieving success. 

This definition builds on the goal oriented, striving aspect of conation and synthesises the 

conative characteristics with the definition of mathematical reasoning detailed in Section 

2.1.1. In addition, it signals the intention to focus on state rather than trait aspects of 

conation by locating it within a single mathematical activity. It raised two questions for my 

study: 

What are the components of perseverance in mathematical reasoning? 

What should I look for in children’s responses during mathematical lessons? 

Conation concerns behaviour; it is “the mental process that activates and/or directs 

behavior and action” (Huitt and Cain, 2005, p.1). Three key aspects underpin the pro-

active, purposeful nature of conation (Huitt and Cain, 2005; Tait-McCutcheon, 2008; 

Tanner and Jones, 2003; Snow, 1996): 

• focusing attention and engagement 

• striving 

• intentional actions and inclination towards mindful self-regulatory processes. 

What might each of these mean in relation to mathematical reasoning? 

Fredricks et al. (2004, p.62) define behavioural engagement as 

involvement in learning [… that] includes behaviors such as persistence, concentration, 

attention, asking questions, and contributing to class discussion. 

These aspects, interpreted with the focus of mathematical reasoning, suggest that 

behavioural engagement in mathematical reasoning includes: 
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• concentrating during activities involving mathematical reasoning 

• focusing attention on the mathematical concepts in which the reasoning is anchored 

(Lithner, 2008) 

• focusing attention on the mathematical processes required to form a reasoned line of 

enquiry (Bergqvist and Lithner, 2012; Mason et al., 2010; Stylianides and Stylianides, 

2006) 

• asking questions and contributing to class discussions stimulated by the reasoning 

activity and the related mathematical concepts and processes. 

Persistence, however, is a more complex idea when interpreted in the context of 

mathematical reasoning. Williams (2014, p.30) makes an important distinction between 

perseverance and persistence that illuminates the nature of striving in relation to 

mathematics learning; she argues that perseverance enables progress towards success 

even when the next steps are not clear, whereas persistence involves “keeping on trying 

no matter the quality of the ‘try’“. Building on this, Lee and Johnston-Wilder (2017, p.284) 

assert that 

For a mathematically resilient learner, it is not sufficient to persist; perseverance is more 

important. 

This raises questions about the value of persistence in pursuing a line of mathematical 

reasoning; is it enough to strive by persisting in trying, irrespective of the outcome? To 

persevere in mathematical reasoning, assertions are formed, arguments developed and 

conclusions drawn and this results in movement between the reasoning processes 

discussed in Section 2.2.1. This movement can be represented diagrammatically, for 

example by illustrating the application of cognitive reasoning processes, as in Figure 2.2. 

The outcomes that characterise perseverance in mathematical reasoning illustrate what 

Tanner and Jones (2003, p.277) refer to as “pro-active (not reactive or habitual) 

behaviour” that results in a progression in reasoning processes. This suggests that 

persistent, habitual behaviours may not be conducive to successful perseverance in 

mathematical reasoning. 

The third of the three conative aspects, self-regulation, also needs to be interpreted in the 

context of mathematical reasoning; this is a more complex endeavour than in the first two 

aspects, because, as Snow and Jackson III (1997, p.1) argue, there are no clear 

boundaries between the domains of conation, cognition and affect, and that distinctions 

between domains “should be regarded as a matter of emphasis rather than a true 

partition”. The three domains are inter-connected, with the conative domain playing an 

important role in deliberate, informed behaviours: 
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The conative domain links the affective and cognitive domains to pro-active (as opposed to 

re-active or habitual) behavior. 

(Tanner and Jones, 2003, p.277) 

The pro-active nature of conative behaviours is evident in self-regulatory processes that 

characterise this domain. Zimmerman and Schunk (2011, p.1) define self-regulated 

learning as the process in which students 

activate and sustain cognitions, behaviors, and affects, which are systematically oriented 

towards attainment of their goals. 

This definition further evidences the conative-cognitive and conative-affective interplay, as 

the conative processes of self-regulated learning are enacted in relation to both the 

cognitive and affective domains. It also indicates the types self-regulation that are required 

during mathematical reasoning: self-regulation relating to cognition and self-regulation 

relating to affect. Huitt and Cain (2005) regard perseverance as an important aspect of 

conation as it facilitates these self-regulatory processes. In the following sections, I 

examine self-regulation relating to first cognition, then affect. 

Self-­‐regulation	
  relating	
  to	
  cognition	
  

Schoenfeld (1992, p.334) acknowledges the importance of meta-cognition and highlights 

the “disjointed meanings” of the term at that time. The emerging picture was that meta-

cognition comprised: 

• self-knowledge about cognitive processes 

• self-regulatory procedures including monitoring and decision-making. 

More recently, Goswami (2015) and Özcan (2016) echo Shoenfeld’s components of meta-

cognition, each defining it as the cognitive aspect of self-regulated learning, with two 

components: knowledge of cognition and regulation of cognition. 

When applied to mathematical reasoning, meta-cognition comprises reflection on both the 

information generated and the value of the processes and strategies employed to inform 

action (Mason et al., 2010). This pro-active, focused reflection facilitates successful 

progression in mathematical reasoning, from making trials, to forming and testing 

conjectures, towards generalising and forming convincing arguments. 

Meta-cognitive approaches are embedded in Mason et al.’s (2010) three phase model of 

mathematical thinking. The approach comprises entry, attack and review phases. The 

entry phase is characterised by specialising or creating trials leading to the formation of a 

conjecture. To do this, Mason et al. (2010, p.27) advocate consideration of three 

questions: “What do I know? What do I want? What can I introduce?”. This supports the 
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emergence of active awareness of what is already known and which mathematical 

processes or approaches could be useful in relation to the specific mathematical context. 

The attack phase is characterised by forming and enacting plans to explore conjectures. 

Mason et al. (2010, p.59) argue that “conjectures form the backbone of mathematical 

thinking”. It is perhaps unsurprising then, that one of the key meta-cognitive approaches 

that they advocate relates to the formation, testing and distrusting of conjectures. In a 

cyclical process, conjectures are formulated then tested to check that they are consistent 

with existing cases. At this stage, Mason et al. (2010) advocate purposefully seeking 

additional examples to try to refute the conjecture. Following such scrutiny, the conjecture 

can be modified, re-articulated, and reasoning continues with a focus on why it might be 

true. Engagement in these active, deliberate, meta-cognitive processes is an important 

aspect of forming and testing conjectures. 

The review phase is an opportunity for focused reflection and identification of “key ideas 

and key moments” during the reasoning process (Mason et al., 2010, p.38). These meta-

cognitive activities, or deliberate reflections on process and knowledge, are valuable in 

building mathematical reasoning experiences that will support future reasoning (Mason et 

al., 2010). 

Schoenfeld (1992, p.355) acknowledges that self-regulation and planning for tasks 

improves with maturity; as children get older they become “better at making corrective 

judgments in response to feedback from their attempts”. However, while Goswami (2015) 

concurs with this, arguing that whilst reasoning processes are similar in adults and 

children, children’s meta-cognitive skills develop with maturation. She places great 

significance on the value of children’s meta-cognitive development: 

Learning in classrooms can be enhanced if children are given diverse experiences and are 

helped to develop self-reflective, self-regulatory skills. 

(Goswami, 2015, p.25) 

Hence, it appears that meta-cognitive capabilities enhance learning; in the context of 

mathematical reasoning, meta-cognition seems to play an important role in facilitating 

perseverance through a line of enquiry. 

Self-­‐regulation	
  relating	
  to	
  affect	
  

In Section 2.2.1, I discussed how a range of fluctuating and rapidly changing emotions 

can be experienced during mathematical reasoning. This experience of emotions can 

result in meta-affective responses, some of which facilitate self-regulation. 
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Meta-affect (DeBellis and Goldin, 2006) concerns affect about affect, or emotions about 

emotions. For example, in mathematics learning, feelings of frustration at not being able to 

progress with a line of enquiry may invoke fear of lack of success and associated shame. 

Malmivuori (2006, p.153) describes this meta-affective response as “automatic affective 

regulation” in which negative affective responses can act sub-consciously or habitually to 

impede higher order cognition. Malmivuori (2006) reasons that automatic affective 

regulation operates within weak self-regulatory and stable affective self-systems. This 

meta-affective response does not facilitate self-regulation and it seems likely that this 

presentation of meta-affect may present a barrier to perseverance in mathematical 

reasoning. 

Debellis and Goldin (2006) further argue that cognition plays an important self-regulatory 

role as meta-affect also concerns: 

• emotions about thinking about emotions 

• thinking about directing emotions. 

It is this self-regulatory meta-affective capacity that enables feelings to be experienced 

differently to facilitate cognitive gain; “it allows the solver to experience hypothetical 

emotion to help inform cognition” (DeBellis and Goldin, 2006, p.141). Debellis and Goldin 

illustrate this through the example of experiencing excitement at the fear of a taking a 

fairground ride. They argue that cognition plays an important role, as it is the knowledge 

that the fairground ride is safe that enables feelings of excitement about the fear. They 

similarly argue that, in the mathematics classroom, frustration during reasoning could be 

experienced as pleasure because it is indicative of an interesting problem and this meta-

affective response enables alternative cognitive approaches to be sought. Frustration can 

be experienced as pleasurable if the class has an ethos in which unsuccessful trials and 

mistakes are considered to be valuable in mathematics learning. Malmivuori (2006, p.153) 

describes this conscious acknowledgement and monitoring of emotions during 

mathematical activity, and the subsequent mindful, cognitive actions taken in response to 

these as “active regulation of affect”. 

The self-regulatory construct of meta-affect, and in particular the role that cognition can 

play in thinking about and directing emotions (DeBellis and Goldin, 2006; Malmivuori, 

2006), appears to play an important role in the pro-active regulation of affect. Goswami 

(2015, p.16), describing general learning in the primary phase, concurs with this, arguing 

the importance of 

gaining strategic control over your own mental processes, inhibiting certain thoughts or 

actions, and developing conscious control over your thoughts, feelings and behaviour. 
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She further argues such reflective awareness “is a major achievement of the primary 

years” (2015, p.17). This highlights both the importance and difficulty of developing 

enabling meta-affective capabilities. Mason et al. (2010) also identify this difficulty; they 

recommend taking notes when engaged in mathematical thinking, including recording 

emotions and the moments of being stuck. They reason that this is the first step to 

overcoming being stuck; an approach such as this could also support the active regulation 

of affect (Malmivuori, 2006). However, they acknowledge that such recording is “obviously 

a tall order” (Mason et al., 2010 p.10). 

Hence, meta-affective self-regulation is an important aspect of mathematical thinking and 

reasoning, and whilst it is not easy to develop for children in the primary school phase, it 

may play an important role in contributing to successful perseverance in mathematical 

reasoning. 

2.4.3 Implications for this study 

To formulate the components of the construct ‘perseverance in mathematical reasoning’ I 

have synthesised the three key aspects of conation (Huitt and Cain, 2005; Snow, 1996; 

Tait-McCutcheon, 2008; Tanner and Jones, 2003) with the meta-cognitive and meta-

affective aspects of self-regulation and the definition of mathematical reasoning adopted 

for this research. The resulting components are presented in Table 2.1. These 

components of perseverance in mathematical reasoning informed the collection and 

analysis of conative data (Section 3.4.2, Table 3.12). 

Mathematical reasoning is the pursuit of a line of enquiry to produce assertions and develop 
an argument to reach and justify conclusions. 

 

Perseverance in mathematical reasoning is striving to pursue a line of mathematical 
reasoning, during a mathematical activity, despite difficulty or delay in achieving success. 

 

Components of perseverance in mathematical reasoning 

1. Focusing attention on and engaging with the mathematical activity, mathematical 
concepts and potential lines of reasoning 

2. Striving to pursue a line of mathematical reasoning to produce assertions and develop 
an argument to reach and justify conclusions 

3. Self-regulating 

a. Meta-cognition: planning and monitoring of actions 

b. Meta-affect: active regulation of affect  

Table 2.1: Perseverance in mathematical reasoning and its conative components 

I have argued that perseverance in mathematical reasoning, the striving aspect of 

conation, results in movement between the reasoning processes. This informed the 
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analysis of conative data as I developed coding categories to capture movement between 

reasoning processes and stasis on individual reasoning processes (Table 3.12). The 

diagrammatic representation of children’s movement between reasoning processes, 

based on Figure 2.2, supported the narrative presentation of analysis (Section 3.4.3 and 

Chapters 4–6). 

2.5 Promoting mathematical reasoning in the classroom 

As this study aims to develop pedagogic approaches to enable children in primary school 

to persevere in mathematical reasoning, it is important to consider research on pedagogic 

approaches that promote effective mathematical reasoning. These provide a foundation 

for the pedagogic development in this study. 

In Section 1.1 I argued that successful mathematics learning was dependent on 

mathematical understanding and that mathematical reasoning enabled the development 

of mathematical understanding. Post (1981, section 2) explains that modern cognitive 

psychology places emphasis on understanding 

The objective of true understanding is given highest priority in the teaching/learning 

process. 

Hence, it is relevant to consider constructivist approaches to teaching and learning 

mathematics arising from modern cognitive psychology. In summarising constructivist 

approaches to learning, Post (1988) states that understanding is maximised when children 

interact with their environment; this includes the children’s use of mathematical 

representations and their interactions with other people and the mathematical activity. In 

this section, I consider the role of mathematical representations, the value of dialogue and 

writing and the role of activity type in fostering mathematical understanding and 

reasoning. 

2.5.1 Developing reasoning through the use of mathematical representation 

There is considerable literature about the importance and value of representation in 

constructing mathematics understanding (for example, Anghileri, 2006; Delaney, 2001; 

Rowland et al., 2009) much of which draws on the seminal works of Dienes (1964) and 

Bruner (1966). 

Dienes’ (1964) Dynamic Principle defines three ordered stages for the development of 

mathematical concepts: unstructured play, structured exploration and the emergence of 

the concept with provision for transfer and application. Post (1988) argues that an 

important implication of Dienes’ Dynamic Principle is that children need to have active 

engagement with concrete apparatus in their mathematics learning to facilitate playful 
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exploration that leads to the construction of mathematical concepts. The first stage 

provides an important opportunity for children to be introduced to and explore a new 

manipulative; this is characterised by playful exploration. In the second stage, teachers 

provide children with structured tasks that facilitate the emergence of the mathematical 

concept in the final stage. Children abstract and generalise mathematical concepts 

through two further principles that are embedded within the Dynamic Principle; perceptual 

and mathematical variability (Dienes, 1964). 

Perceptual variability promotes abstraction of a concept by making changes to the way in 

which aspects that are irrelevant to the concept are varied. For example, the concept of 

square might be represented through constructing a square shape using geostrips (Figure 

2.3), drawing the shape on squared paper or constructing a square area or square 

perimeter using Cuisenaire rods (Figure 2.4). In the first example, the geostrips first 

emphasise the equivalence in side length in the selection of strips of equal length, then 

once the quadrilateral is constructed, they help to emphasis the equivalence in angle. In 

the other two examples, the equivalence in angle is supported through the 900 angles 

evident in the resources, hence these representations place greater emphasis on 

establishing equivalence in side length. The focus on equivalence in side length facilitates 

children to construct understanding that a square of 5cm side length can be represented 

symbolically as: five multiplied by five, 5×5 and 52. The Perceptual Variability Principle 

supports children to abstract the equivalence in side length and angle in the concept 

square. 

 

Figure 2.3: Construction of a square using geostrips 
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Figure 2.4: Construction of a square using Cuisenaire rods 

The Mathematical Variability Principle facilitates generalisation of a concept by varying 

irrelevant attributes. For example, in developing understanding to generalise the concept 

of a square, Cuisenaire rods might be used to construct squares of different sizes, 

organised on the table in a variety of orientations. Each example represents the 

equivalence in side length and angle that characterises a square, whilst varying irrelevant 

features such as size, orientation and colour. This fosters understanding that particular 

squares can be constructed and described according to side length, leading to the 

generalisations that if one side length is known, the square can be constructed and that 

the general description of the area of all squares of side length a, is a×a. 

Post (1981, section 2) argues that the three ordered stages of Dienes’ Dynamic Principle, 

underpinned by the two Principles of Variability are indicative that “true understanding of a 

new concept is an evolutionary process”. 

Bruner’s (1966, p.10) model of mathematical representation, or translations of “experience 

into a model of the world”, comprises three modes to represent mathematical concepts: 

enactive, iconic and symbolic. The symbolic mode is characterised by the use of written or 

oral symbols, the iconic mode by images and the enactive mode by hands on or direct 

experience. Bruner argues that a child can think about a mathematical concept in each of 

these three modes, but importantly, the concept is represented in each mode. For 

example, the concept of difference can be exemplified in the enactive mode through 

showing the difference of 8 and 5, representing each number in Numicon and overlaying 

the two shapes to represent the difference of 3 (Figure 2.5). 
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Figure 2.5: The use of Numicon pieces to represent the differences between 8 and 5 

Bruner (1966) advocates working both within and between each mode to construct 

conceptual understanding; this resonates with Dienes’ Variability Principles (1964). Whilst 

working within the enactive mode, the appearance of the concept might be changed, as in 

Dienes’ Principle of Perceptual Variability. When working within or across modes, both 

perceptual and mathematical variability can be in evidence, supporting abstraction and 

generalisation of concept. 

Mathematical representation plays an important role in constructing mathematical 

reasoning. It not only enables children to construct understanding of mathematical 

concepts, about which they can reason, but also supports pattern spotting and the 

formation of an explanation of why a pattern occurs. Taking these two ideas in turn, 

representation is significant as it is a means to enable patterns to become visible. 

Children’s use of Bruner’s (1966) three modes of representation facilitates both the 

emergence of numeric, geometric and colour patterns and the children’s awareness of the 

patterns. In Section 2.1.2, I discussed the importance of pattern spotting in the 

development of conjectures and generalisations; the use of representation plays an 

important role in enabling children to notice mathematical patterns and this acts as a 

catalyst for conjecturing and generalising. 

The use of representation can also play a key role in enabling children to form arguments 

about why a generalisation is true. In Section 2.1.2 I discussed how Mulligan and 

Mitchelmore (2009; 2012) and Mason et al. (2009) identify the importance of not only 

recognising and articulating patterns but also understanding the relationship between 

patterns and the underlying mathematical structures. Representations can play a key role 

in revealing the mathematical structures underpinning a pattern. For example, in Figure 

2.1, the use of an enactive representation that emphasised the structure of even and odd 

numbers as divisible by 2 with no remainder or a remainder of 1 supported the 
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construction of a generalisation and convincing argument about the totals of odd and even 

numbers. 

2.5.2 Activity design and mathematical reasoning 

Mueller et al. (2010) explored the design of activities that promote mathematical 

reasoning. They began by establishing the value of open-ended activities compared to 

routine or closed tasks and elicited the following components of open-ended activities that 

promote mathematical reasoning: 

• multiple entry points 

• multiple options for solution strategies 

• open to multiple representations 

• solutions not readily available 

• can have more than one solution. 

They argue that such open-ended activities, in which the solutions are not readily 

apparent to the children, provide a stimulus for reasoning, as children have to explain and 

justify their thinking and draw on their own resources to justify solutions. 

One consequence of this is that children with different levels of mathematical knowledge 

can engage with such tasks successfully. This is not dissimilar to the “low threshold high 

ceiling” style of activity promoted by NRICH (McClure, 2012). This style of activity is based 

on Papert’s (1980) idea that a simple programming language like Logo could be 

accessible to children whilst also engaging expert users. A low threshold high ceiling 

activity is similarly accessible to most, whilst providing opportunities for engaging in 

challenging mathematics. This is consistent with Van de Walle’s (2003) guidance that 

activities must be challenging yet not inaccessible to children, as activities that are too 

difficult result in frustration and those that are too easy provide limited opportunities for 

growth. 

The use of rich mathematical tasks is also widely promoted (for example, Hewson, 2011; 

Piggott, 2008). Ahmed and Williams’s (2007) summary of the features of a rich 

mathematical activity is not dissimilar to those of Mueller et al.’s (2010), detailed above, to 

promote mathematical reasoning. Both identify the need for: accessibility for all with the 

potential for challenge (low threshold high ceiling), decision-making and the capacity to 

pursue individual line of enquiry. In addition, Ahmed and Williams (2007) identify rich 

mathematical activities as providing opportunities for discussion being enjoyable and, 

significantly, providing opportunities for reasoning through involving children in processes 

such as speculating, hypothesis making and testing and proving and explaining. Hence, 
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an open-ended activity can promote reasoning and an activity can be rich if it promotes 

reasoning. 

Francisco and Maher’s (2005) longitudinal study establishes a distinction between the 

value of working on a series of simple tasks and working on a complex task. They found 

that complex tasks stimulated children’s mathematical reasoning and enabled them to 

build durable, deep mathematical knowledge for themselves. Whilst it is conceivable that 

working on a series of simpler tasks might scaffold understanding, they argue that this 

relies on children’s capacity to relate the component parts and construct meaning from 

these; they found that this was not common and when it did occur, the result was not as 

personally meaningful as that constructed from complex tasks. However, Francisco and 

Maher do not offer guidance as to what constitutes a complex task: 

This, of course, will depend on the particular students involved and their earlier experience 

working with these and with similar problems over time. 

(2005, p.366) 

However, their finding encourages teachers to provide children with activities that will 

foster reasoning through the children’s own unveiling of the complexity of the 

mathematical activity. 

2.5.3 Developing reasoning through mathematical dialogue 

Children’s talk is recognised as a powerful means to create learning; for example, 

Alexander (2008) argues that whilst recitation is the most common form of classroom 

interaction both nationally and internationally, it is discussion and dialogue that have the 

greatest benefits to developing cognition. This stance is highly relevant to mathematics 

learning and to the development of mathematical reasoning. Mueller (2009) reasons that 

mathematical discussion and student to student communication are integral to developing 

mathematical understanding; Ball and Bass (2003a, p.32) argue that mathematics is 

“enacted, used and created” through language, and that mathematical language in 

particular “is the foundation of mathematical reasoning”. Whilst my study does not focus 

explicitly on mathematical dialogue in the classroom, the importance and value of spoken 

interaction was recognised and applied in the research lessons. 

Earlier (Section 2.5.1), I argued that representations are significant in enabling children to 

construct mathematical understanding; the use of representations also plays an important 

role in supporting mathematical dialogue. For example, Mueller et al., (2010, p.152) found 

that 

the building of models naturally led to collaboration […]. The models that they built required 

understanding of the problem and they worked together to achieve this understanding. 
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Moreover, they argue that the variety of mathematical models created by the children and 

the resulting dialogue provided a platform to build on the ideas of peers. Similarly, in their 

study on 6th grade children (equivalent to year 7 in England), Mueller and Maher (2009) 

saw mathematical resources not just as a means to explore and construct individual 

thinking but also to communicate and justify this to peers. In my study, Cuisenaire rods 

provided tools for children to communicate their reasoning and to engage with their peers’ 

reasoning. 

The teacher’s use of questioning can focus and deepen children’s verbal reasoning and, 

Alexander (2008, p.26) argues, extend it beyond “closed question/answer/feedback 

routine[s]” into something more cumulative. Franke et al. (2009) researched how teachers 

used questioning to press children to explain and justify reasoning. They found that the 

most effective way to follow up children’s initial explanations was not with a specific 

probing question, or a general question, but with a probing sequence of specific 

questions: 

asking a probing sequence of specific questions frequently helped students provide a 

correct and complete explanation after they initially provided an explanation that was not 

correct and complete. 

(Franke et al., 2009, p.390) 

Each specific question in the sequence supported the children to be increasingly accurate 

in their explanation, to eradicate ambiguities, correct ideas and develop coherence. 

Collaborative work is widely recognised as being important in creating opportunities for 

mathematical dialogue to occur (for example, Askew, 2012; Boaler, 2009; Bruner, 1996). 

Mueller and Maher (2009) further argue that small, heterogeneous groups support 

children to build ideas collaboratively, test conjectures and hear the justifications of peers. 

Francisco and Maher (2005) found that whilst collaborative work is commonly considered 

to help children overcome cognitive obstacles, there was a second, important form of 

collaboration. This comprised children generating, challenging, refining and choosing to 

pursue (or not) new ideas. Children used their ability to construct thinking together to 

develop discursive and convincing arguments for themselves, rather than relying on their 

accumulated knowledge. 

To support children to articulate and express mathematical reasoning in a succinct and 

elegant way, the NRICH team (2014b) advocate the use of language structures in the 

form of sentence starters, such as: “I think this because… The pattern looks like…; This 

can’t be because…”. In addition, Lee (2006) argues that in order to articulate 

understanding, children require time to think about, construct and reflect on their ideas. 
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Similarly, Mueller and Maher (2009) concur that time is necessary for children to 

internalise mathematical ideas and to test out conjectures. Alexander (2008) argues that 

this demands that teachers manage lessons at the pace of cognition rather than to 

maintain an organisational pace. 

In his research with pre-service teachers, Liljedahl (2004) described an approach in which 

he filled the air with ideas. He sought to support the construction of mathematical 

reasoning and problem solving by creating 

an environment in which there were lots and lots of surrounding ideas; ideas that were in 

the air but not necessarily anchored to each other. 

(Liljedahl, 2004, p.185) 

This approach impacted on the mathematical connections that pre-service teachers were 

able to make. In the context of a mathematics lesson in a primary school, filling the air 

with ideas could include creating opportunities for shared dialogue and shared 

representations within and across groups in the class. 

Alexander’s (2008) dialogic teaching synthesises many of the features discussed here to 

promote mathematical reasoning dialogue. Like Mueller and Maher (2009), Alexander 

argues for a collective and reciprocal approach in which children address tasks together 

rather than in isolation, and that they share and listen to each other’s ideas. In a dialogic 

teaching approach, ideas are cumulative and the children and teacher link and connect 

ideas into coherent lines of enquiry; this idea could be developed in the classroom using 

Franke et al.’s (2009) probing sequences of specific questions. Significantly, dialogic 

teaching is purposeful and has educational goals in view; in the case of my research, the 

purpose was to pursue a line of enquiry to produce assertions and develop an argument 

to reach and justify conclusions. 

2.5.4 Developing reasoning through writing 

Johanning (2000) distinguishes two forms of communicating thinking in mathematics 

through writing: traditional writing and writing to learn. Whilst both forms could include the 

use of narrative sentences with mathematical symbols, in the first approach, students 

need to have the conceptual understanding prior to writing. This might include creating a 

permanent record of understanding for later reference (Lee, 2006). Through writing, 

mathematical understanding can be constructed: 
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ideas become ordered, confusions are uncovered and sorted out, misconceptions are 

addressed and the whole becomes more easily remembered. 

(Lee, 2006, p.79) 

Johanning (2000) argues that writing to learn helps students to create conceptual 

understanding through communicating their thoughts using mathematical language. 

It is the relatively slow pace of writing, Freitag (1997) argues, that is conducive to learning 

as it forces the thinking to slow down to the pace of writing. Writing to learn (Johanning, 

2000) might afford the reflective time that Lee (2006) advocates for children to capture 

their understanding of a concept or to explain what they know. However, the picture is 

complex. Hensberry and Jacobbe (2012) found that diary writing helped children aged 9–

11 to follow Pólya’s (1959) heuristic and this led to a richer use of problem solving 

strategies. However, they noted that for some children, it was necessary to articulate 

thinking orally prior to writing, and that this dialogue, rather than the act of writing, may 

have been of greater significance in effectively applying Pólya’s problem solving heuristic. 

Consequently, Hensberry and Jacobbe (2012) are cautious in their claims of the impact of 

writing alone on children’s mathematical problem solving. 

Kosko (2016) reports that whilst the use of writing in mathematics lessons to support 

learning has been advocated for the last three decades, there is little evidence of its use 

in English speaking countries. This is consistent with my observations of mathematics 

lessons in English schools. This is perhaps a reflection of English statutory policy; the 

National Curriculum for mathematics in England recognises the importance of 

mathematical communication, but its emphasis is on spoken language rather than a 

broader focus that includes the written form: 

Spoken language 

The quality and variety of language that pupils hear and speak are key factors in 

developing their mathematical vocabulary and presenting a mathematical justification, 

argument or proof. They must be assisted in making their thinking clear to themselves as 

well as others. 

(DfE, 2013, p.4) 

Segerby’s study of Swedish children aged 8–11 similarly found that whilst the Swedish 

mathematics curriculum (Skolverket, 2011) emphasised the need to develop children’s 

skills in mathematical communication, “writing is not extensively used” and calculations 

are the dominant form of writing (Segerby, 2015, p.1290). 

Writing about mathematics and personal mathematical understanding is not easy and this 

may be one reason for its limited application in mathematics classrooms: 
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It is hard for the pupils to use mathematical language, hard to find the right words, and 

hard to create the meaning that the pupil wants. […] this is a difficult thing to ask most 

pupils to do. 

(Lee, 2006, p.78) 

So whilst there is value in writing about mathematical understanding, the difficulty of the 

process for many may discourage teachers from utilising writing as an approach to 

mathematical learning. To help to overcome these difficulties, Lee (2006) advocates that 

children temporarily express their ideas in writing, using scraps of paper or whiteboards 

and discussion of the writing with peers. Freitag (1997) recommends other practical 

approaches as a stimulus to mathematical writing such as keeping a journal and letter 

writing. However, Lee (2006), like Hensberry and Jacobbe (2012), cautions that any form 

of writing in the mathematics lesson should be the result of thinking and talking to enable 

children to construct understanding, and, moreover, that time spent on thinking and 

talking should outweigh that given to writing. 

2.5.5 The value of provisionality in computing in fostering reasoning 

In Section 2.1, I discussed the central role that forming, testing and adjusting conjectures 

plays in pursing a line of mathematical reasoning. This conjectural approach requires 

thinking to be considered as provisional, or interim, temporary and subject to change. The 

notion of provisionality (Leask and Meadows, 2000) is an idea that is drawn on more 

commonly in computing education than mathematics education. The provisional 

capabilities of computing, and in particular, computer programming, facilitate provisional 

and iterative thinking; it 

enables users to make changes, try out alternatives and keep a ‘trace’ of the development 

of ideas. 

(Loveless, 2002, p.12) 

As computers began to be commonly available in education, Papert (1980) created the 

Logo environment, using a programmable screen turtle, to foster mathematical thinking. A 

child creates instructions to move the turtle, which are enacted dynamically on the screen, 

providing immediate and accurate feedback on the instructions programmed. In one 

example, Papert (1980, p.75) describes a child who, having created a procedure for a 

square, decides to write a procedure for an equilateral triangle. Through a trial and 

improvement, conjectural approach, she is able to arrive at the generalisation that the 

angle of turn, or dynamic angle is 

3600 
number of sides on the shape 
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This illustrates how Logo utilises the provisional nature of computer programming to 

facilitate children to conjecture, make trials and use the resulting data to make 

improvements. Fox et al. (2000, p.54) argue that 

Logo is a good example of provisionality. If everything one told the screen turtle to do 

worked perfectly first time, Logo would be very boring and largely pointless. The whole 

point about Logo is that you can formulate your hypothesis about how to achieve 

something, test it in practice, and modify your hypothesis repeatedly until you achieve what 

you set out to do. 

The use of provisionality to construct understanding through a trial and improvement, 

conjectural approach to mathematics is strongly evident in Logo. Lerman (1994, p.42) 

argues that this fallibilistic approach to engaging with mathematics “offer[s] each child the 

possibility to be a mathematician”. There is congruence between this approach to 

mathematics learning and the fallibilist epistemological approach adopted in this study 

(discussed in 3.1.2). 

As well as enabling children to develop cognitively by constructing mathematical 

understanding, the provisional nature of programming also has an affective impact on 

children (Papert, 1980). It fosters an attitude that mathematical thinking is fallible, that it 

concerns trial and improvement and conjecturing rather than the pursuit of right or wrong 

answers. Such an approach, he argues, makes children “less intimidated by a fear of 

being wrong” (Papert, 1980, p.23). 

2.5.6 Implications for this study 

The provisional use of representation and the development of reasoning through writing 

informed the interventions applied in the study. 

Creating the conditions that enable children to engage in mathematical reasoning in the 

primary classroom is complex and involves multiple and interconnected pedagogic 

approaches including the organisation of children, the type of task and representations 

used, the teacher’s approach to asking questions, the language structures promoted by 

the teacher and the allocation of time. This is a demanding suite of conditions for 

generalist primary teachers to create and Alexander (2008, p.31) recognises the high 

levels of teacher expertise required: 

discussion and scaffolded dialogue have by far the greatest cognitive potential. But they 

also, without doubt, demand most of teachers’ skill and subject knowledge. 

The implication for my research was that, in order to be able to develop pedagogic 

approaches to improve children’s perseverance in mathematical reasoning, it would be of 

benefit to work with teachers who have deep mathematical and pedagogic knowledge and 
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who are able to create the conditions for mathematical reasoning as part of their typical 

pedagogic approach. 

2.6 Research questions 

Chapter 2 has shown that pursuing a line of enquiry in mathematical reasoning is not 

straightforward and consequently, children encounter difficulties. Whilst research has 

identified some of the difficulties that that children experience in mathematical reasoning, I 

followed Reid’s (2002) advocacy of further research on the extent of formation of 

children’s reasoning. I was interested in not just learning about the difficulties that children 

experience during mathematical reasoning, but in developing pedagogic approaches to 

overcome these so that, within individual mathematical activities, they are able to 

persevere in mathematical reasoning to pursue a line of enquiry, produce assertions, 

develop an argument and reach conclusions. 

I located perseverance in mathematical reasoning as a construct that focuses on the state 

rather than trait aspect of conation, and this is reflected in the focus on individual 

mathematical activities. 

To explore these issues, I formulated one overarching research question and three sub-

questions. 

2.6.1 Overarching research question 

How can primary teachers improve children’s perseverance in mathematical reasoning? 

Mathematics research, policy and practice literature identify a repertoire of pedagogic 

approaches to create the conditions for children to engage in mathematical reasoning. It is 

not clear is how effective these are in enabling children to engage in mathematical 

reasoning so that they are able to produce assertions, develop an argument and reach 

conclusion. Moreover, whilst reasoning is embedded in the statutory mathematics 

curriculum in England, there are questions whether children aged 10–11 have the 

cognitive and meta-cognitive understanding to produce mathematical assertions, develop 

mathematical arguments and reach mathematical conclusions. Although the development 

of executive function takes time, I was interested in exploring pedagogic actions that can 

have immediate impact on the development of children’s perseverance in mathematical 

reasoning, rather than actions with only the potential for longitudinal impact. Hence, the 

overarching research question forms the central focus for my study: to design, apply and 

evaluate pedagogic approaches to improve children’s perseverance in mathematical 

reasoning in the context of single mathematical activities. 
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I utilised the notion of provisionality (discussed in Section 2.5.5) to formulate interventions 

by facilitating children to create and interact with representations of their mathematical 

thinking in a provisional way (Section 3.2.4). I sought to develop their perseverance in 

mathematical reasoning by supporting development of concepts and reasoning 

approaches whilst also facilitating affectively enabling responses throughout the process. 

2.6.2 Sub-questions one and two 

To what extent and how does the interplay between cognition and affect impact on 

children’s perseverance in mathematical reasoning? 

What impact, if any, does the children’s conative focus have on this interplay? 

I sought to apply existing research findings relating to mathematics cognition, affect and 

conation to inform class based interventions and curriculum development. 

McLeod (1992) recognises the importance of the affective domain in mathematics 

learning. Following his work, there has remained a recurring theme in mathematics 

education research: the drive towards developing common frameworks and terminology to 

describe the affective domain (for example, Di Martino et al., 2015; Hannula, 2011b). 

Researchers in mathematics education have developed a number of frameworks that 

describe aspects of the affective domain and have recognised, although not fully 

understood, the interplay in mathematics learning between cognition and affect (Di 

Martino and Zan, 2013a; Hannula, 2011b; Mandler, 1989). 

Whilst this remains important work, I was particularly interested in utilising the current 

understanding of the affective domain to inform and evaluate practical research in the 

primary classroom; this was a recommendation from CERME9 (Di Martino et al., 2015). 

To explore my overarching research question, I implemented pedagogic strategies 

intended to improve children’s perseverance in mathematical reasoning. My first sub-

question builds on this by examining any interplay between cognition and affect taking 

place during the lessons and the impact, if any, that this has on children’s perseverance in 

mathematical reasoning. My second sub-research question considers how the children’s 

focus impacts, if at all, on the affective-cognitive interplay. Because my research focused 

on children’s responses within single mathematical activities, I was interested in the state 

rather than trait aspect of affect. 

2.6.3 Sub-question three 

What difficulties do children need to overcome in order to persevere in mathematical 

reasoning? 
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I have argued that there is need for perseverance in mathematical reasoning because of 

the difficulties that children need to overcome in pursuing a line of mathematical 

reasoning. Ellis (2007) and Reid (2002) identified cognitive difficulties children encounter 

during mathematical reasoning and Ashcraft and Moore (2009) identified general 

mathematics anxiety as an affective barrier to mathematical reasoning. I formulated this 

final research question to facilitate a critical exploration of the nature of the difficulties 

children encounter and the nature of the perseverance in mathematical reasoning that is 

required to overcome them. 

The examination of literature in this chapter also raised implications for how I researched 

these questions. For example: 

• the decrease in affect in mathematics from year 5 to year 9 (Section 2.2.3) indicated 

that year 6 was an appropriate year group within which to focus the study 

• the need to found the interventions on recognised existing effective pedagogic 

practice had implications for which teachers I sought to conduct the study with 

(Section 2.5.6) 

• the focus on the state aspect of cognition, affect and conation had implications for the 

location of data and methods of data collection 

• methods of data collection and analysis pertaining to children’s perseverance in 

mathematical reasoning were informed by the reasoning processes (discussed in 

Section 2.1.1 and illustrated in Figure 2.2) and the conative components of 

perseverance in mathematical reasoning (discussed in Section 2.4.2 and summarised 

in Table 2.1). 

In the next chapter, I develop these ideas and discuss the methodology and methods I 

used to address the research questions.  
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Chapter 3: Methodology and Methods 

In Section 2.6, I formulated the research questions for this study. In this Chapter, I 

examine the approach I adopted to answer these questions. 

3.1 Philosophical and methodological approach 

3.1.1 Pragmatist philosophical stance 

Swann (2003) distinguishes between practical and theoretical problems. The research 

questions that I formulated for this study are broadly of the type that Swann (2003, p.28) 

refers to as practical problems as they concern “how to get from one state of affairs to 

another” and “what is happening?” when trying to achieve this. She argues that the 

solution to a practical problem requires action to be taken because “a new state of affairs 

[is sought] as a consequence of something having been done” (2003, p.28). To explore 

the practical problem, how can primary teachers improve children’s perseverance in 

mathematical reasoning? I needed to examine potential solutions by taking action and 

evaluating the impact of this action. 

This is not to ignore the importance of theory and questions in the form ‘what is the case?’ 

and ‘why?’. Pratt (1999) argues that actions in response to practical questions may rely on 

explicit theory or implicit assumptions about why things happen. In my research I sought 

to take theoretically informed actions to improve practice, with the allied aim of generating 

new knowledge and understandings (Section 1.3). I adopted an intervention approach to 

explore potential solutions to the problem in practice and examined their impact on 

children’s perseverance in mathematical reasoning. 

There is a close resonance between this practical problem-based approach to knowledge 

generation and a pragmatist philosophical stance. The term pragmatism, derived from the 

Greek pragma, relates to action (Delanty and Strydom, 2003); pragmatism emphasises 

the role of humans in practical relation to the world. It is a philosophy in which “genuine 

problems [are] set by their existential problematic situations” (Dewey, 2003 [1938], p.293). 

Consequently, a central principle underpinning a pragmatic approach is that knowledge is 

developed through finding resolution to an existential problem through action and 

reflection on action (Hammond, 2013). 

Pragmatism emphasises the relationship between practice and theory and rejects 

ontological dualism arguing, “separation between theory and data, facts and values does 

not correspond to the real world” (Taatila and Raij, 2012, p.833). I drew strongly on this 

pragmatic idea. I formulated an opening conjecture (Section 1.4), planned interventions 

that were innovative interpretations of existing theory (Section 3.2.4) and sought to 
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construct understanding by subjecting the interventions to cycles of empirical testing. I 

utilised existing knowledge to guide my observations and to facilitate analysis of the data 

resulting from practical interventions. However, in a pragmatic inquiry, the relationship 

between practice and theory is evident not only in the formulation, testing and evaluation 

of a conjecture. Dewey (2003 [1938], p.292) argues that a pragmatic social inquiry has 

“ends-in-view” that are necessary to: construct a hypothesis; plan an approach to deal 

with the problem; inform what should be looked for; guide observation and inform what 

counts as relevant. This philosophical approach is particularly suited to my research as I 

could use the reasoning processes discussed in literature (Section 2.1.2 and Figure 2.2) 

as “ends-in-view” to make comparisons with children’s perseverance in mathematical 

reasoning. 

Pragmatist epistemology is founded on an evolutionary approach to the construction of 

knowledge (Hartas, 2010). This is consistent with Popper’s (2002) fallibilist approach to 

the generation of knowledge through cycles of forming and testing conjectures, and 

eliminating errors. It recognises that knowledge is temporal, contextual (Bradie and 

Harms, 2012), potentially fallible (Hammond, 2013; Hartas, 2010) and therefore, as 

Popper argues (2002), subject to change. A pragmatist inquiry focuses on “making fallible 

progress” (Hookway, 2010, Section 4.1); an approach that was well suited to my research 

as I sought improvement of practice in the context of a small scale study. It means that all 

claims to knowledge should be held “lightly and tentatively” (Hookway, 2010, section 4.1) 

and viewed critically. A pragmatist approach results in the generation of statements, 

known to be tentative, to articulate new knowledge and understanding. This impacted on 

both the iterative approach of my study and the manner of expressing the analysis and 

the findings; for example, conclusions are put forward as statements known to be 

provisional that can be tested in other contexts. 

3.1.2 Methodological approach 

I identified the need to use an intervention approach to explore solutions to the problem in 

practice, but what form of intervention study would facilitate answering my research 

questions most effectively? To answer this, I considered the data needed to explore the 

research questions and where, when and with whom the data might be generated. 

I sought to develop and test pedagogic approaches that enabled children to improve 

perseverance in mathematical reasoning during single mathematical activities. This 

comprises two ideas: the improvement of children’s perseverance in mathematical 

reasoning and the development of pedagogies that teachers can adopt to achieve this. 

Considering first the development of children’s perseverance in mathematical reasoning, 
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in Section 2.4.2 I reasoned that this is a state construct; it is transient and can fluctuate in 

a short period of time, in contrast to a more stable trait, such as mathematical resilience 

(Johnston-Wilder et al., 2013). This meant that the data pertaining to children’s 

perseverance in mathematical reasoning would arise during their engagement in 

mathematical reasoning, hence, data needed to be collected whilst children engaged with 

mathematical reasoning activities. There are two potential situations in which this 

happens, during routine mathematics lessons in the school day and during out of school 

experiences such as after school clubs or summer schools. I discounted the latter 

because of the origins of the problem I had formulated. My research questions arose from 

the difficulty that children seem to experience in persevering in mathematical reasoning 

during routine lessons and I sought pedagogic approaches that could address this in 

routine lessons. This meant that data needed to be collected during these lessons. As I 

secondly sought to develop pedagogies that primary teachers could use to improve 

children’s perseverance in mathematical reasoning, it was important that the children’s 

primary teachers, rather than another party such as a specialist mathematics educator or 

researcher, created the opportunities for them to engage in mathematical reasoning. The 

data in this study consequently needed to arise during children’s mathematical reasoning 

and the opportunities for this needed to be created by the children’s teacher during 

mathematics lessons. 

From this scrutiny of the location of the data, a significant point emerges; the need for, 

and importance of, collaboration with primary teachers. It was important to work in close 

collaboration with the teachers of the children involved in the study as they not only taught 

the lessons comprising the interventions, but they played a key role in planning the 

intervention lessons and evaluating their impact on children’s perseverance in 

mathematical reasoning. 

Three features were thus central to generating the data to answer my research questions: 

1. the data were generated during and following implementation of interventions 

2. close collaboration with the teachers of the children in the study was required to plan, 

implement and evaluate interventions 

3. the data arose from children’s responses in mathematics lessons in which the 

interventions were implemented. 

There is substantial literature about research addressing practical problems and including 

interventions such as I intended. In particular, action research is an “orientation to inquiry” 

(Reason and Bradbury, 2008, p.1) that applies an intervention approach to problems of 

practice, often involving collaboration (Townsend, 2013). Bradbury (2015, p.1) argues that 
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it “nearly always starts with a question such as How can we improve this situation?”. The 

commonalities between the three features of data generation that I had identified for my 

study and action research led me to consider how I could utilise elements of an action 

research orientation in this study. 

Lewin (1948) advocates the need for research on social practices to be based on actions 

taken within the social setting. His action research approach comprised cycles of 

planning, acting, observing and reflecting. This early model has developed into an 

orientation that Somekh (1995, p.340) argues is “broadly defined and takes widely 

different forms”. Similarly, Gray (2009) asserts that specific methodologies reflect the 

priorities of the research focus they are intended to serve, each with a distinctive nuance 

to suit its context and intended outcomes. For example, participatory action research 

(Reason and Bradbury, 2008; Swantz, 2008) emphasises the involvement of a community 

of participants in democratically instigating and solving problems, which often concern 

oppression. Insider action research (Coghlan and Brannick, 2005) emphasises the role of 

individuals within their own organisations in enacting and researching change. Critical 

action research (Carr and Kemmis, 1986) emphasises the role of collaboration through 

the application of critical theory in empowering both the individual and the collective in 

bringing about change. Townsend (2010, p.132) reflects that whilst the array of action 

research methodologies appears “to cover a bewilderingly disparate set of approaches”, 

each model applies Lewin’s central features of action research: 

• the fusion of action and research 

• the use of a cyclical intervention approach 

• concern with improving practice in social situations. 

Reason and Bradbury (2008, p.7) argue that an action research orientation is creative and 

approaches are borrowed and shared; they lament “[it] upsets us when we see action 

research as narrowly drawn”. This view empowered me to draw from action research 

approaches in designing my methodological approach. Whilst no single action research 

approach was precisely suited to exploring my research questions, the three central 

features described above were congruent with my research focus: I formulated research 

questions based on the problems I had encountered in practice; I utilised what Somekh 

(2006, p.6) describes as “action strategies to bring about positive changes”; I created an 

intervention based on theory (Section 3.2.4) which I explored in practice and analysed 

with reference to theory prior to being revised. 

In addition to these central features, there are characteristics that are evident in some but 

not all action research approaches. One such characteristic is pertinent to my research: 
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the role of researching personal practice. Many action research approaches describe how 

a practitioner researches her own practice within her own situation. However, McAteer 

(2013, p.28) comments that whilst action research questions “usually” relate to improving 

personal practice, this feature is not a requisite. As my professional role was not that of 

primary teacher, and the research had to be located in primary mathematics lessons, I 

sought to work alongside primary teachers. This positioned me as an outsider-researcher 

in relation to the teachers’ institutions and practices. Somekh argues that 

the only distinction between practitioners and those often called ‘outsiders’ in action 

research is that the latter are not full-time participants in the social situation but have a 

short term role. 

(1995, p.341) 

The social situation for this research, rather than being understood as a specific school 

institution, can be interpreted as mathematics lessons in which primary teachers enable 

children to persevere in mathematical reasoning. This is of direct personal concern as in 

my practitioner role I teach and advise pre- and in-service teachers in the creation of such 

conditions. Consequently, the findings from this study, whilst not researching my practice, 

are of immediate value and use in my practice. 

Collaboration is similarly a feature of many action research approaches (Reason and 

Bradbury, 2008); collaboration with teachers was of central importance to the success of 

my research. Somekh (1995, p.342) argues that whilst an individual may instigate the 

study, the actions and research are grounded by the values of the group. In this study, I 

instigated the research and through collaboration with the participating teachers, 

established that we held shared views: the importance of embedding mathematical 

reasoning in the learning of primary mathematics; that persevering in mathematical 

reasoning was problematic for some children and there was value in exploring 

interventions to improve this situation. Then, through collaboration and negotiation, we 

devised and engaged in cycles of planning, action, observation and reflection. 

In action research, new knowledge is developed through cycles of formulating 

conjectures, subjecting these to critical testing and subsequently forming new conjectures. 

New knowledge is based on the “investigation of, and agreement on, the consequences of 

action” (Hammond, 2013, p.609). In my study, collaboration with the participating primary 

teachers was crucial not only in the plan and act phases of the research cycles but also in 

the reflect phase. Our collaborative planning, reflections and analysis facilitated what 

Hammond describes as “inter-subjective agreement”; we sought a shared understanding 

of what might be happening and how and why we might augment future interventions to 

enable us to establish “warranted assertions”. This is significant in a pragmatic approach 
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as it supports the participants to navigate a path that lies between individual subjectivism 

and positivism. Townsend (2013) argues that action research makes a distinctive and 

multi-faceted contribution to the development of knowledge. It focuses on the changes 

resulting from the research, the impact of these changes and the learning that has 

resulted for all involved. The learning developed in this study by the teachers and me was 

directly applicable to our professional practices in primary schools and a university. In 

addition, Townsend (2013) argues that an action research approach can create new 

knowledge that contributes to the body of knowledge in the field. The potential of action 

research to generate local and wider knowledge is congruent with the research aims 

discussed in Section 1.3. 

In this research, there is epistemological congruence between the approach to developing 

knowledge and the pedagogic approach used in the interventions. Each involves a 

fallibilist epistemology in which knowledge or learning is developed through a provisional, 

conjectural approach. Hammond (2013) asserts the importance of this congruence in 

pragmatic action research. Building on Dewey’s (1951) thinking, that children learn 

through experiencing and reflecting on problem solving, Hammond (2013, p.612) argues 

that 

if action researchers, drawing on pragmatic principles, believe that there is value in a 

collaborative, iterative approach to addressing problems of practice then, taking the same 

logic, they should favour pedagogical interventions that promote a problem-solving 

curriculum rather than ones that focus on crude memorisation strategies. 

This pragmatic and pedagogic congruence is a feature of the approach that I have utilised 

in this study. 

The application of an action research approach on a small-scale would enable the 

research questions to be addressed through the collection of detailed qualitative data. The 

small-scale nature of my study raises questions about the generalisability of findings; for 

example, would I be able to argue that a pedagogic intervention that resulted in 

perseverance in mathematical reasoning for the children in my study would have the 

same impact for all children? Bassey interprets the term generalisation to mean 

‘predictive generalisation’ because […] the essential value of a generalisation is that it can 

be used to predict events. 

(1995, p.89) 

He argues that an “open generalisation” (1995, p.98) is descriptive of what is known and 

predictive of what is unknown. My fallibilist approach means that I was testing statements 

about actions that improve perseverance in mathematical reasoning, albeit in specific 
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contexts. If the statements are not falsified, they can be offered as tentative general 

solutions for use elsewhere. This approach is applicable to my study, particularly as the 

schools in which the study was located were not selected because of any particular 

situation relating to perseverance in mathematical reasoning (Section 3.2.5). Adopting 

Bassey’s (1995) understanding of open generalisation enabled me to use the findings 

from my specific study to make predictive generalisations about what could happen if the 

interventions were applied in other contexts. 

Summary	
  of	
  methodological	
  approach	
  

My methodological approach can be summarised as an intervention approach utilising the 

central and some common features of action research. In this approach, I: 

• formulated a problem of practice 

• created an initial intervention based on existing literature 

• sought collaboration with primary teachers who valued in the importance of 

mathematical reasoning 

• collaborated with primary teachers to develop and apply interventions by engaging in 

cycles of planning, teaching/observing and evaluating lessons 

• analysed and reported on the impact of all the interventions applied 

• applied the findings in practice 

• sought pragmatic and pedagogic congruence in the construction of all learning 

• sought to report findings using open generalisations. 

3.1.3 Practical application of the methodology: a problem-based action 
research approach 

Having concluded that a pragmatic intervention approach drawing on the central features 

of action research is suitable for this study, I needed to consider how I would put this into 

practice. I sought an approach to intervention that enabled me to apply the features of 

action research already identified and that facilitated a systematic and critical examination 

of the impact of the interventions in the complex naturalistic settings that were requisite for 

data generation in this research. In addition to exploring the cognitive, affective and 

conative responses of individual children, I was researching in learning environments with 

multiple teacher-child and child-child interactions. 

Swann argues that a systematic approach is needed when researching complex social 

situations and designed an approach to achieve this. Her Problem-Based Methodology 

(PBM) (Swann, 2003; 2012) offers a systematic action research methodology, which is 

designed for the exploration of practical problems. For Swann (1999, p.66), all learning 
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begins with a problem and whilst “most problems remain unformulated and un-

selfconscious”, the formulation of problems should be central to the researcher; her PBM 

is founded on the formulation of practical problems and the systematic and critical testing 

of these. Swann’s (2003; 2012) approach comprises the following stages: consideration of 

what is going well, what is not going well and barriers to change; the formulation of a 

practical problem; the design of potential solutions in the form of actions; consideration of 

how to test the efficacy of the actions; implementation of actions and review of solutions. 

In this research, I adapted Swann’s PBM to suit my specific research situation. I 

considered the questions concerning the current situation (what is going well/not going 

well) prior to convening the research group. I based these reflections on my professional 

experiences including observations of children’s mathematical learning, dialogue with pre-

service and in-service teachers and on relevant recent research (Ofsted, 2008; 2012, 

discussed in Section 1.1). Following this, I formulated the overarching research question, 

how can primary teachers improve children’s perseverance in mathematical reasoning? 

Whilst this formed the research problem, it also framed the etic issue “brought in by the 

researcher from outside” (Stake, 1995, p.20). I then invited teachers to work alongside me 

in the research; I sought practitioners for whom the etic issue that I, as an outsider to their 

situations, had problematized was “of mutual concern” (Wicks et al., 2008, p.6). Whilst my 

working alongside practitioners in the classroom was a necessary aspect to this study, the 

teachers’ roles were significantly more than a means of access to mathematics teaching 

and learning environments. Townsend (2010, p.143) argues that action research is 

best achieved with the active support, and participation, of individuals with differing 

perspectives on the same issue. 

Carr and Kemmis (1986, p.199) regard participation as essential in achieving 

communication that results in 

mutual understanding and consensus, in just democratic decision making, and common 

action towards achieving fulfilment for all. 

Consequently, the teachers’ collaboration and reflections were central to the design and 

analysis of the study. Together, we tailored the research design so that it built on the 

emerging emic issues arising from the teachers’ insider perspectives (Stake, 1995). I 

revisited the initial stages of Swann’s PBM (2003; 2012) with each teacher and invited 

them to consider what was going well in the current situation and for whom, what was not 

going well and for whom, and what seemed to be inhibiting the desired change from 

taking place. The focus here on for whom was an augmentation of Swann’s PBM, and 

enabled the teachers to begin to consider which children, within their classes, might form 
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the study group. In this way, we began to develop a shared understanding of both etic and 

emic issues. This enabled us to progress to the later stages of Swann’s PBM in which we: 

• made decisions on the courses of action we would take, the form of interventions and 

how these might be enacted 

• made decisions on how to test the efficacy and worth of interventions 

• applied, adapted and re-applied the interventions 

• evaluated the efficacy of the interventions. 

The final step of Swann’s PBM is to write an account of the research and the learning that 

took place; I undertook this role.  

During our initial meetings, the teachers and I negotiated the differing roles we would each 

take. Whilst Hammond (2013, p.609) argues that collaboration is a significant factor in 

action research to facilitate 

investigation of, and agreement on the consequences of action [to] provide the basis for a 

claim to knowledge, 

Somekh (1995) recognises the need to balance the benefits of practitioners having a 

central role in research against constraining factors. The latter include the time 

practitioners have available for research and their potential lack of specialist research 

knowledge. Hence, my role was to take the lead in the overarching research design and in 

collecting, presenting, interpreting and analysing data and writing the research reports. 

The teachers played a joint role in discussing potential interventions, planning and 

teaching lessons that incorporated interventions, and discussing and evaluating their 

impact. Whilst we jointly discussed the content of the research lessons and our pedagogic 

interventions, the teachers took the lead role in planning and implementing these lessons. 

This was a similar approach to that used by Somekh in the Pedagogies with E-Learning 

Resources project (2006, pp.177-195). It enabled the teachers to bring their expertise to 

the research and to control the pedagogic innovation in a way that built on the emic issues 

each had identified whilst being manageable in terms of each teacher’s available 

resources. 

3.2 Project design 

The research comprised two phases: a pilot study in 2013 and the main study in 2014–15. 

This design embedded the pragmatic epistemology discussed in Section 3.1.1, in which 

knowledge construction was recognised to be evolutionary, in two key ways. 

First, the pilot study was used to develop knowledge that could be applied in the main 

study. Second, the research was founded on the formulation and testing of conjectures 
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which involved subjecting the initial conjecture to testing and subsequently augmenting 

this in the light of evaluation. 

3.2.1 Pilot study 

Kumar (2011, p.11) argues that researchers conduct pilot studies to explore the worth of 

conducting a more detailed study and also to “develop, refine and/or test measurement 

tools and procedures”. The pilot study, which was reported at CERME9 as noted in 

Section 2.3 (Barnes, 2015, see Appendix 2.2), was designed to facilitate preparation for 

the main study in each of the ways that Kumar describes. I sought to explore the opening 

conjecture (Section 1.4) by applying an intervention and evaluating its impact on 

children’s mathematical reasoning. I also sought to develop effective approaches to 

collecting data, particularly data pertaining to the affective domain, in the classroom 

environment. This was pertinent as it is an area with acknowledged difficulties: 

the complexity of affect as it occurs in social contexts, where mathematics is taught and 

learned, is exceptionally difficult to characterise for purposes of research. 

(Schorr and Goldin, 2008, p.132) 

The pilot study provided an important opportunity to explore how I might characterise 

affect in learning mathematics to enable data collection and the development of analytic 

codes. My aims for the pilot study were to: 

• explore the value of researching the impact of the opening conjecture 

• develop and apply methods of data collection, review their efficacy and consider 

adaptations based on this 

• develop analytic codes and methods of data analysis 

• seek an effective and ethical approach to research collaboration with a teacher 

• engage in an initial exploration of the opening conjecture. 

To achieve these aims, I worked with one primary teacher, T1, who taught a class of year 

6 children aged 10–11, and four children who formed the study group. The pilot study 

(illustrated in Figure 3.1) comprised one baseline lesson (BL) followed by one action 

research cycle. This involved two research lessons (RL) in which one intervention was 

applied. In the pilot, I sought to improve children’s perseverance in mathematical 

reasoning by applying an intervention that provided children with opportunities to use 

mathematical representations in a provisional way. 
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Figure 3.1: Fieldwork processes in pilot study  
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The pilot study confirmed that the opening conjecture was worthy of further study because 

the children seemed to demonstrate increased perseverance in mathematical reasoning 

(Barnes, 2015, see Appendix 2.2). Whilst the methods of data collection and analysis 

were effective for cognitive, affective and conative data arising from in-class mathematical 

reasoning activity, there were four specific points of learning arising from the pilot study. 

T1 identified a group of six children in her class who had limited perseverance in 

mathematical reasoning, and I initially attempted to work with a study group that 

comprised all six children. However, I had difficulty in recording observational data in vivo 

relating to six children and this compromised the quality of data available for analysis. 

Consequently, after the BL in the pilot study, I reduced the study group size to four 

children and this enabled me to collect observational data in sufficient depth. 

I recorded observational data during the lessons in three ways: taking photographs of the 

mathematical representations that the children made during the lesson, audio recording 

the children’s dialogue and utterances and taking notes on the children’s actions and non-

verbal behaviour and expressions. Two issues emerged from these data collection 

methods. First, in creating the lesson observation transcripts, there was a risk of 

photographs being mis-collated because I had not noted when I took pictures. To 

overcome this, I began to record the points at which I took photographs in my observation 

notes. Second, I noticed that I was more proficient at collecting data relating to cognition 

than affect. I realised the need to support my efficiency in capturing data relating to the 

children’s affective responses so created two distinct columns to record data relating to 

cognition and affect (see Table 3.7). 

The pilot study enabled me to construct and refine the questions that I asked during the 

post-lesson interviews so that I could check my understanding of what I had observed, 

gain the children’s interpretation of what had happened and why, and explore the extent 

of the children’s mathematical reasoning. By the end of the pilot, I had developed lines of 

questioning that augmented the observational data and informed the evaluation of the 

impact of the intervention (see Table 3.8).  

In Section 3.1.3 I discussed the importance of collaborating with teachers; I highlighted 

the importance of their role in the research whilst acknowledging that this needed to be 

balanced against constraining factors. The pilot study provided the opportunity to explore 

the distribution of roles in the research to enable the teacher to actively and genuinely 

collaborate within the available resources. As planning and preparing lesson activities is a 

routine part of the teacher’s role, T1 and I decided that she would take the lead in 

selecting the lesson activities and that we would jointly design how the intervention would 
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be applied during planning meetings. However, in our final evaluation meeting we 

reflected that the activity in the BL did not provide opportunities for the children to form 

generalisations. This is not to say that T1 was not skillful in activity selection, rather that 

sourcing apposite activities for research lessons requires additional knowledge to sourcing 

activities for routine lessons, in particular, detailed knowledge of the relevant theoretical 

framework. This led me to take the role of analysing the potential of mathematical 

activities with greater scrutiny in the main study, as detailed in Section 3.2.3. 

In summary, the pilot study enabled me to make adaptations to improve the methods of 

data collection (discussed in Section 3.3), these included: 

1. working with four children in each class 

2. two minor adaptations to the ways I recorded observational data. First to separate the 

observational data pertaining to the cognitive domain from those pertaining to the 

affective and conative domains in my observational record, and second to record 

when photographs were taken (Table 3.7) 

3. small adaptations to the interview schedule, organising, augmenting and sequencing 

the lines of questioning 

4. greater scrutiny of the mathematics activities provided in each lesson to ensure that 

they afforded opportunities for children to persevere in mathematical reasoning. 

3.2.2 Main study 

The main study took place concurrently in School 2 and School 3, working alongside two 

year 6 teachers, T2 and T3. I conducted the fieldwork within one academic year to limit 

the effects of potential sample mortality; it is less common for children and teachers to 

change schools during an academic year than during the transition between academic 

years. 

The main study comprised one Baseline Lesson (BL), followed by two action research 

cycles, each comprising two Research Lessons (RLs). In the first cycle, we applied the 

same intervention as in the pilot study, in the second cycle we augmented the intervention 

(Section 3.2.4) to include a specific focus on forming generalisations and convincing 

arguments with additional time to do this. Figure 3.2 illustrates the sequence of research 

activity in the main study. The colour coding depicts the collaboration between me and the 

teachers and the involvement of the study group children. The cycles of action research 

are illustrated within each rounded rectangle. 
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Figure 3.2: Fieldwork processes in main study  

Activities	
  involving	
  me	
  solely	
  

Activities	
  involving	
  me	
  &	
  one	
  T	
  
Meeting	
  with	
  me,	
  T2&T3	
  

Activities	
  involving	
  study	
  children	
  

Key	
  

Individual	
  meetings	
  with	
  
T2/T3	
  to	
  discuss	
  scope	
  of	
  
project	
  and	
  create	
  project	
  plan	
  

I	
  emailed	
  meeting	
  notes	
  and	
  requests	
  
for	
  consent	
  to	
  take	
  part	
  to	
  T2/T3	
  for	
  
comment,	
  amendment	
  and	
  return	
  

Main study initial meetings June – September 2014 

I	
  emailed	
  observation	
  
notes	
  and	
  interview	
  
transcripts	
  to	
  T2&3	
  

Main study Baseline Lesson: no intervention 

T2&3	
  taught	
  baseline	
  
lesson	
  in	
  own	
  classes	
  
with	
  no	
  amendments	
  
to	
  usual	
  pedagogy	
  

I	
  observed	
  study	
  
group	
  whilst	
  they	
  
engaged	
  in	
  
mathematical	
  activity	
  

I	
  interviewed	
  study	
  
group	
  immediately	
  
following	
  the	
  lesson	
  

T2&3	
  and	
  I	
  discussed	
  baseline	
  
data	
  in	
  relation	
  to	
  research	
  
question	
  and	
  planned	
  outline	
  of	
  
baseline	
  lesson	
  

T2&3	
  and	
  I	
  evaluated	
  
baseline	
  lesson	
  and	
  
planned	
  research	
  lesson	
  1	
  

September – October 2014 

Following	
  RL1,	
  T2&3	
  and	
  I	
  met	
  together	
  to	
  
evaluate	
  RL1	
  and	
  to	
  plan	
  RL2	
  

I	
  emailed	
  observation	
  
notes	
  and	
  interview	
  
transcripts	
  to	
  T2&3	
  

T2&3	
  taught	
  research	
  
lesson	
  in	
  own	
  class,	
  
incorporating	
  trial	
  of	
  our	
  
pedagogic	
  intervention	
  

I	
  observed	
  study	
  group	
  
whilst	
  they	
  engaged	
  in	
  
mathematical	
  activity	
  

I	
  interviewed	
  study	
  
group	
  immediately	
  
following	
  the	
  lesson	
  

Main study Research Lesson 1 & 2: initial intervention 

Following	
  RL2,	
  I	
  met	
  T2/T3	
  individually	
  to	
  
evaluate	
  RL2	
  and	
  plan	
  RL3	
  and	
  RL4	
  

November 2014 – February 2015 

Main study Research Lessons 3 & 4: augmented intervention 

T2&3	
  taught	
  research	
  
lesson	
  in	
  own	
  class,	
  
incorporating	
  trial	
  of	
  our	
  
pedagogic	
  intervention	
  

I	
  observed	
  study	
  group	
  
whilst	
  they	
  engaged	
  in	
  
mathematical	
  activity	
  

I	
  interviewed	
  study	
  
group	
  immediately	
  
following	
  the	
  lesson	
   After	
  RL4	
  I	
  emailed	
  

observation	
  notes	
  and	
  
interview	
  transcript	
  to	
  T2&3	
  

February – March 2015 

Main study evaluation meetings 

Individual	
  meetings	
  with	
  T2/T3	
  to	
  evaluate	
  
the	
  project	
  in	
  their	
  school	
  

June 2015 
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The purposes of the BL were: 

• to validate the teachers’ assessments that the study group, purposively selected for 

their limited perseverance in mathematical reasoning, demonstrated limited 

perseverance in mathematical reasoning 

• to gather baseline data, with no intervention applied, to enable the teachers and me to 

be able to respond to the questions adapted from Swann’s PBM (2003; 2012): 

o to what extent were the children in the study group currently demonstrating 

perseverance in mathematical reasoning? 

o what seemed to be inhibiting their capacity to persevere in mathematical 

reasoning? 

• to familiarise the children with the presence of an observer from outside the school 

and the mechanisms for data collection. 

Collaboration between the teachers and me was enabled through: 

• joint planning of the interventions 

• sharing observation and interview transcripts with the teachers 

• joint evaluation of the impact of the interventions. 

The teachers and I met as a group of three to plan the BL, RL1 and RL2, and to evaluate 

the BL and RL1. This enabled us to co-construct a shared approach to the research and 

had been my intended approach for the entire study. However, as the fieldwork 

progressed and the data relating to each child grew, there became an increasing need to 

create time to discuss the responses of individual children in depth. I continued to balance 

the ethical dilemma (Section 3.5.3) of the demands on the teachers’ time, the value of our 

three-way collaboration and the need for detailed discussions relating to individual 

children. Hence, following RL2, and having established a shared approach to the 

research, I met with each teacher individually to evaluate and plan lessons and to 

evaluate the overall project. 

3.2.3 Mathematical activities used in each lesson 

As the research sought to improve the children’s perseverance in mathematical 

reasoning, we needed to provide the children with opportunities for reasoning; hence all 

the mathematical activities used in each lesson, including the BL, were chosen to afford 

opportunities for reasoning. The teachers who took part in this study routinely used 

activities involving mathematical reasoning in their teaching, drawing on the activity styles 

discussed in Section 2.5.2: the use of open ended activities (Mueller et al., 2010), low 

threshold high ceiling tasks (McClure, 2012) and rich tasks (Ahmed and Williams, 2007; 
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Hewson, 2011; Piggott, 2008). The teachers were thus experienced in designing and 

teaching lessons using activities that fostered reasoning. 

In the pilot study, whist our intention had been to adopt these activity styles, this had not 

been sufficient to enable the children to demonstrate their perseverance in mathematical 

reasoning; T1 and I reflected that the activity chosen in the pilot BL did not have sufficient 

scope for the children to generalise and form convincing arguments. Consequently, in the 

main study I considered the affordances for mathematical reasoning of potential activities. 

Greeno (1994) applied Gibson’s (1977) idea of affordances to mathematics learning, 

arguing that factors, such as mathematical activities, contribute to the kind of interactions 

that occur. The implication for my study was that the mathematical activity would 

contribute to the reasoning that the children are able to construct. Consequently, I needed 

to consider the affordances of potential activities in relation to the opportunities each 

presented for children to apply the mathematical processes discussed in Section 2.1.2 

and illustrated in Figure 2.2. 

However, cognitive affordances were not the sole consideration in activity selection. In 

Sections 2.2 and 2.3 I discussed the role of emotions during mathematical reasoning and 

the significant interplay between cognition and affect during mathematical activity, and this 

indicated that it would be valuable to analyse the affective affordances of potential 

activities. To do this, I drew on the approach used by Schorr and Goldin (2008) in their 

study to examine the cognitive and affective affordances of a computer-based 

mathematical task. 

The second lesson from the pilot study was to choose mathematical activities pitched at a 

level suitable for the year 6 children in Schools 2 and 3. Consequently, we chose activities 

designed for children of the same age range and, importantly, that the teachers assessed 

as having appropriate challenge for their individual classes. 

In summary, the activities needed to provide opportunities for children to persevere in 

mathematical reasoning. The teachers and I chose activities that: 

• were appropriately pitched for the children in each class 

• afforded opportunities for children to pursue a line of enquiry, produce assertions and 

develop an argument to reach and justify conclusions 

• afforded opportunities for children to experience and respond to affect in relation to 

engaging with activities involving mathematical reasoning, this included opportunities 

to experience feelings such as uncertainty, puzzlement, curiosity, pleasure. 
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Table 3.1 lists the names of activities used throughout the main study. Table 3.2 gives an 

example of the analysis of cognitive and affective affordances and their potential impact 

on perseverance in mathematical reasoning for one activity; the complete set is presented 

in Appendix 3.1. 

Observed	
  lesson	
   Mathematical	
  activity	
  used	
  in	
  Schools	
  2	
  and	
  3	
  
BL	
   Magic	
  Vs	
  (NRICH,	
  2015a)	
  
RL1	
   Addition	
  pyramids	
  
RL2	
   Paths	
  around	
  a	
  pond	
  

RL3	
  and	
  RL4	
   More	
  numbers	
  in	
  the	
  ring	
  (NRICH,	
  2016)	
  (School	
  3	
  only)	
  
Number	
  differences	
  (NRICH,	
  2015b)	
  

Table 3.1: Mathematical activities in each observed lesson 
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Main study baseline lesson: Magic Vs (NRICH, 2015a)  

Activity 
summary: 

 

Arrange	
  the	
  numbers	
  1–5	
  in	
  a	
  V	
  arrangement	
  so	
  that	
  each	
  arm	
  of	
  the	
  V	
  
sums	
  to	
  the	
  same	
  total.	
  For	
  example:	
  

Potential	
  cognitive	
  
affordances	
  

Potential	
  affective	
  
affordances	
  

Potential	
  impact	
  on	
  
perseverance	
  

Adding	
  1-­‐digit	
  numbers.	
  
Random	
  specialisation	
  to	
  
arrange	
  the	
  numbers	
  in	
  V	
  to	
  
create	
  trials.	
  
Criterion	
  to	
  only	
  use	
  numbers	
  
1–5	
  accurately	
  applied.	
  
Notice	
  and	
  articulate	
  emerging	
  
patterns	
  about	
  the	
  layout	
  of	
  the	
  
numbers	
  to	
  create	
  arms	
  with	
  
the	
  same	
  total.	
  
Structural	
  awareness:	
  
importance	
  of	
  number	
  shared	
  
by	
  both	
  arms.	
  
Systematic	
  specialising	
  in	
  the	
  
positioning	
  of	
  the	
  base	
  number.	
  
Form	
  and	
  test	
  conjectures	
  and	
  
generalisations	
  about	
  how	
  to	
  
arrange	
  the	
  numbers	
  according	
  
to	
  their	
  odd/even	
  property.	
  
Artful	
  specialisation,	
  based	
  on	
  
the	
  location	
  of	
  odd/even	
  
numbers,	
  to	
  test	
  conjecture.	
  
Form	
  convincing	
  arguments	
  
about	
  how	
  to	
  position	
  the	
  
numbers	
  in	
  successful	
  solutions	
  
based	
  on	
  their	
  odd/even	
  
property	
  and	
  the	
  greater	
  
number	
  of	
  odd	
  than	
  even	
  
numbers	
  in	
  the	
  set	
  1–5.	
  
Form	
  generalisation	
  about	
  any	
  
set	
  of	
  5	
  consecutive	
  numbers,	
  
anchored	
  in	
  odd/even	
  
properties	
  of	
  the	
  set.	
  

Be	
  at	
  ease	
  with	
  
unsuccessful	
  trials.	
  
Work	
  with	
  mathematical	
  
uncertainty.	
  
Explore	
  in	
  a	
  ‘playful’	
  
way.	
  
Potential	
  feelings	
  of:	
  
• uncertainty	
  
• puzzlement	
  
• frustration	
  
• curiosity	
  
• encouragement	
  
• satisfaction	
  
• pleasure	
  
• pride	
  
Exploration	
  directed	
  by	
  
children	
  (mathematical	
  
intimacy	
  and	
  potential	
  
integrity).	
  

Able	
  to	
  make	
  a	
  start	
  and	
  
engage	
  in	
  activity	
  with	
  
potential	
  for	
  mathematical	
  
reasoning.	
  
Self-­‐regulatory	
  processes	
  to	
  
facilitate	
  progress	
  in	
  
reasoning.	
  
Overcoming	
  instances	
  of	
  
being	
  stuck	
  or	
  unsure.	
  
Effort	
  and	
  attention	
  
focused	
  on	
  creating	
  
systematic	
  trials	
  and	
  
pattern	
  spotting.	
  
Effort	
  and	
  attention	
  
focused	
  on	
  formation	
  of	
  
generalisations	
  and	
  
convincing	
  arguments.	
  

Table 3.2: Cognitive and affective affordances of Magic Vs activity and potential impact on perseverance in 
mathematical reasoning 

1 

5 

3 

4 

2 
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3.2.4 The interventions 

Initial	
  intervention:	
  RL1	
  and	
  RL2	
  

I utilised the notion of provisionality, discussed in Section 2.5.5, to formulate the first 

intervention to facilitate children to create and interact with representations of their 

mathematical thinking in a provisional way. Mathematical representations were provided 

in the form of physical resources, images, or written text and symbols, but each could be 

used in a provisional way. Lee’s idea (2006, discussed in Section 2.5.4), to facilitate 

mathematical writing by expressing ideas using scraps of paper or whiteboards alongside 

discussion of the writing with peers, is an example of the use of provisionality to develop 

written representations. In my study, the provisional use of representations took the 

following forms: 

• construction and adaptation of physical, pictorial and written representations 

• re-positioning representations in relation to each other. 

In facilitating children’s provisional uses of representation, I sought to develop their 

perseverance in mathematical reasoning by supporting both the development of 

mathematical concepts and reasoning approaches. My conjecture was that if the children 

made provisional use of mathematical representations, they would be supported in their 

use and application of the reasoning processes discussed in Section 2.1.2. In particular, I 

conjectured that their provisional use of representations would facilitate them to: 

• begin to think about the mathematics in the activity by making random trials, described 

by Mason et al. (2010) as random specialisation 

• begin to notice patterns and relationships to prepare the ground for conjecturing 

(Stylianides and Stylianides, 2006) 

• apply increasingly systematic approaches to their trials, described by Mason et al. 

(2010) as systematic specialisation 

• form what Lakatos (1963, p.139) describes as “naïve” conjectures about the patterns 

and relationships they notice 

• test conjectures by applying examples that might explore its validity, described by 

Mason et al. (2010) as artful specialisation 

• form generalisations based on the results of their conjectures 

• form convincing arguments about why the generalisations might be true that are 

anchored in the relevant mathematical properties (Lithner, 2008), which could involve 

children drawing on the structures that underpin the mathematical patterns (Mulligan 

and Mitchelmore, 2009). 
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During the planning meetings, the teachers and I explored, discussed and evaluated 

representations that could be used provisionally by the children to support their reasoning 

during each activity; we made our selection of representations following this analysis. The 

teachers then provided children with representations that could be used in a provisional 

way in all RLs. In all lessons, except RL2, the children were given a choice of 

representations that could be used provisionally and they could elect to use pencil and 

paper as an addition or alternative. In RL2 the children were initially provided with just 

Cuisenaire rods and later in the lesson, once they had constructed a sequence of ponds 

with surrounding paths from the rods, they were asked to create a record with pencil and 

paper.  

I hoped that the children’s provisional use of representations would enable them to 

persevere in mathematical reasoning so that they followed a pathway similar to that 

presented in Figure 2.2 and re-presented below: 

 

Figure 3.3 [and 2.2]: Potential pathway showing reasoning processes in pursuit of a line of mathematical 
reasoning 

Additionally, in providing representations that could be used provisionally, I also hoped to 

replicate the impact that the provisional nature of Logo had on children’s affect (discussed 

in Section 2.5.5), by fostering affectively enabling responses.  

Augmented	
  intervention:	
  RL3	
  and	
  RL4	
  

The initial intervention was modified to take account of the findings arising from the 

analysis of children’s responses in RL1 and RL2; the rationale for this is fully discussed in 

Section 4.2.3 and summarised here. The augmented intervention comprised: 

• continued opportunities for children to use representations in a provisional way 

• provision of additional time to develop reasoning relating to one activity by allocating 

two mathematics lessons on consecutive days 

• an explicit focus on generalising and convincing in the activity. 

The initial and augmented interventions are summarised in Table 3.3.  

Form convincing 
argument Generalise Specialise Spot 

pattern 
Form, test, 

adjust conjecture 
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Intervention	
  
name	
  

Initial	
  intervention	
   Augmented	
  intervention	
  

Lessons	
  in	
  
which	
  
intervention	
  
applied	
  

RL1	
  and	
  RL2	
   RL3	
  and	
  RL4	
  

Summary	
  of	
  
intervention	
  

Opportunities	
  for	
  children	
  to	
  use	
  
representations	
  in	
  a	
  provisional	
  
way.	
  

Opportunities	
  for	
  children	
  to	
  use	
  
representations	
  in	
  a	
  provisional	
  
way.	
  
An	
  explicit	
  focus	
  on	
  forming	
  
generalisations	
  and	
  convincing	
  
arguments	
  in	
  the	
  activity.	
  
Provision	
  of	
  time	
  to	
  develop	
  
reasoning	
  relating	
  to	
  one	
  activity	
  by	
  
allocating	
  two	
  mathematics	
  lessons	
  
on	
  consecutive	
  days.	
  

Additional	
  
information	
  

Teachers	
  provided	
  children	
  with	
  
representations	
  that	
  could	
  be	
  used	
  
in	
  a	
  provisional	
  way.	
  The	
  teacher	
  
and/or	
  children	
  modelled	
  the	
  use	
  of	
  
the	
  representations	
  at	
  the	
  
beginning	
  of	
  and	
  during	
  lessons.	
  

In	
  RL1	
  representations	
  comprised	
  
Numicon	
  and	
  number	
  cards,	
  both	
  of	
  
which	
  could	
  be	
  used	
  provisionally	
  
to	
  arrange	
  and	
  re-­‐arrange	
  the	
  
numbers	
  in	
  the	
  pyramid.	
  	
  

Children	
  were	
  given	
  a	
  choice	
  of	
  
using	
  one,	
  both	
  or	
  neither	
  of	
  these	
  
representations.	
  They	
  could	
  elect	
  to	
  
use	
  pencil	
  and	
  paper	
  as	
  an	
  addition	
  
or	
  alternative.	
  

In	
  RL2	
  representations	
  comprised	
  
Cuisenaire	
  rods	
  that	
  could	
  be	
  used	
  
provisionally	
  to	
  arrange	
  and	
  re-­‐
arrange	
  the	
  ponds	
  and	
  surrounding	
  
paths.	
  

Children	
  were	
  initially	
  given	
  
Cuisenaire	
  rods	
  to	
  construct	
  a	
  
sequence	
  of	
  ponds	
  with	
  
surrounding	
  paths.	
  They	
  were	
  then	
  
given	
  pencil	
  and	
  paper	
  to	
  record	
  the	
  
corresponding	
  numeric	
  sequence.	
  

Teachers	
  provided	
  children	
  with	
  
representations	
  that	
  could	
  be	
  used	
  
in	
  a	
  provisional	
  way.	
  These	
  
comprised:	
  	
  

• Number	
  cards	
  and	
  blank	
  cards	
  
that	
  could	
  be	
  used	
  provisional	
  to	
  
arrange	
  and	
  re-­‐arrange	
  numbers	
  
in	
  the	
  ring/grid.	
  

• Mini-­‐whiteboards	
  that	
  could	
  be	
  
used	
  to	
  record	
  and	
  revise	
  trials.	
  

The	
  teacher	
  and/or	
  children	
  
modelled	
  the	
  use	
  of	
  the	
  
representations	
  at	
  the	
  beginning	
  of	
  
and	
  during	
  lessons.	
  

Children	
  were	
  given	
  a	
  choice	
  of	
  
using	
  one,	
  some,	
  all	
  or	
  none	
  of	
  these	
  
representations.	
  They	
  could	
  elect	
  to	
  
use	
  pencil	
  and	
  paper	
  as	
  an	
  addition	
  
or	
  alternative.	
  

Teachers	
  created	
  explicit	
  focus	
  on	
  
generalising	
  and	
  forming	
  
convincing	
  arguments	
  by:	
  

• Introducing	
  the	
  lesson	
  as	
  having	
  
an	
  explicit	
  focus	
  on	
  figuring	
  out	
  
why	
  

• Providing	
  children	
  with	
  sentence	
  
starters	
  such	
  as	
  “It’s	
  go	
  to	
  be	
  
because…”	
  

• Providing	
  children	
  with	
  
opportunity	
  to	
  write	
  an	
  
explanation	
  of	
  what	
  they	
  found.	
  

Table 3.3: Summary of interventions 
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3.2.5 Selection of participants 

The	
  teachers	
  

For Carr and Kemmis (1986), democratic decision-making is essential in an action 

research approach. Hence, prior to inviting teachers to take part in this research, I 

reflected on and articulated three factors that that would impact on the teachers’ 

capacities to contribute to our shared, democratic decision-making required to support the 

design, implementation, reflection on and evaluation of the study. These were: 

• the teachers’ professional knowledge and expertise 

• their values in the teaching and learning of mathematics 

• the age group of the children they taught. 

The expertise and values of the participating teachers were significant. The focus for the 

research was to develop pedagogies to improve children’s perseverance in mathematical 

reasoning, hence the mathematical subject and pedagogic knowledge of the participating 

teachers was central to this development. In Section 2.5 I discussed pedagogies to 

develop children’s mathematical reasoning and sought to work alongside teachers for 

whom the use of such pedagogies were embedded in their practice; this provided an 

excellent foundation for pedagogic development. Somekh (2006, p.31) recognises that 

participants’ actions are “strongly influenced by their values and beliefs” and this was 

significant in my research as I sought to work alongside teachers for whom the etic issue I 

had identified was of concern; hence, I sought teachers who valued and placed 

importance on children’s reasoning in mathematics learning and had concerns when this 

was problematic for children. 

In my professional practice, I am predominantly concerned with mathematics learning and 

teaching in the primary phase (age 5–11) and my knowledge of this phase and 

interactions with teachers and children in this phase led to my formulation of the 

overarching research question. However, which age group would be most suitable to 

develop the pedagogies that we sought in this study? In Section 2.2.3 I discussed how the 

TIMSS report (Ina et al., 2012) showed a reduction in persistence in mathematics 

between years 5 and 9. This suggested that, within the primary phase, the year group that 

would be most likely to present difficulties arising from mathematical persistence were the 

oldest age range, year 6. 

Consequently, I sought to work alongside teachers who: had expertise and an interest in 

mathematics teaching and learning, valued mathematical reasoning and also taught 

children in year 6. I approached teachers who seemed to match these parameters. 
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Information pertaining to the teachers who took part in the main study is detailed in Table 

3.4. 

The school context was not of primary importance, as the literature that I drew on in my 

formulation of the problem did not indicate that school context was a significant factor. 

However, focusing the implementation of the interventions in more than one school was 

important for two reasons. First, implementing and evaluating the interventions in different 

school settings was important to increase the validity of the findings; the context of the two 

schools differed in a number of ways (Table 3.4). Second the implementation of the 

intervention in more than one school guarded against sample mortality should a teacher 

withdraw from the study. Details of each school’s situation are also provided in Table 3.4 

for additional context. 

Name	
  	
   Teacher	
  information	
   School	
  name	
  and	
  context	
  (data	
  
extracted	
  from	
  Ofsted	
  inspection	
  
report)	
  

Teacher	
  2	
  
(T2)	
  
	
  

Graduate	
  of	
  the	
  Mathematics	
  
Specialist	
  Teacher	
  Post-­‐
Graduate	
  Certificate	
  
Programme	
  
Mathematics	
  subject	
  leader	
  

School	
  2	
  
Voluntary	
  aided	
  church	
  school	
  
Number	
  of	
  children	
  on	
  roll:	
  207	
  
Age	
  range	
  of	
  children:	
  4–11	
  
Children	
  eligible	
  for	
  free	
  school	
  meals:	
  
below	
  average	
  
Children	
  with	
  a	
  statement	
  for	
  their	
  needs:	
  
below	
  average	
  

Teacher	
  3	
  
(T3)	
  
	
  

Participant	
  in	
  multiple	
  local	
  
mathematics	
  education	
  
initiatives	
  
Recognised	
  within	
  the	
  local	
  
authority	
  as	
  a	
  passionate	
  and	
  
knowledgeable	
  teacher	
  of	
  
primary	
  mathematics	
  

School	
  3	
  
Local	
  authority	
  primary	
  school	
  
Number	
  of	
  children	
  on	
  roll:	
  215	
  
Age	
  range	
  of	
  children:	
  4–11	
  
Children	
  eligible	
  for	
  free	
  school	
  meals:	
  
above	
  average	
  
Children	
  with	
  a	
  statement	
  for	
  their	
  needs:	
  
well	
  above	
  average	
  
Number	
  of	
  children	
  who	
  enter	
  or	
  leave	
  
the	
  school	
  other	
  than	
  the	
  usual	
  times	
  is	
  
higher	
  than	
  most	
  other	
  schools	
  	
  

Table 3.4: Details of teachers participating in main study 

As indicated in Table 3.4, T2 and T3 were interested and had expertise in the teaching 

and learning of mathematics. The pedagogies detailed in Section 2.5 were typical of their 

regular practice, three features of which were particularly important to the study. First, 

they valued the use of mathematical representation, were confident in modelling 

mathematical ideas using a range of representations and provided opportunities for 

children to use representations in mathematics lessons. Second, they routinely provided 

children with rich or open-ended activities in mathematics lesson and shared the criteria 

for these with children at the beginning of lessons by displaying them on the board. 

Finally, they valued mathematical dialogue, routinely provided children with opportunities 
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to develop and express thinking orally in mathematics lessons and paired work was 

characteristic of their typical mathematics lesson design; one consequence of this 

approach was that the tables in their classrooms were arranged so that the children were 

able to work in pairs and small groups during lessons. These features of the teachers’ 

practice prior to the study were significant. The teachers were already applying 

pedagogies known to promote effective mathematical reasoning in the primary phase 

(discussed in Section 2.5) and this provided effective environments in which to apply and 

test new interventions that were intended to improve children’s perseverance in 

mathematical reasoning. In addition, the teachers’ mathematical and pedagogic expertise 

enabled them to collaborate in the research through contributing to the design of the 

activities and interventions used in the lessons and evaluating their impact. 

The	
  children	
  

Prior to considering which children would form the focus of the study, we first needed to 

determine the number of children to involve in each class. One function of the pilot study 

had been to determine this. 

Initially, in the pilot study, T1 and I explored collecting data from a group of six children. 

However, we found that this number of children compromised the depth and detail of the 

data I was able to collect. Reducing the group to four enabled sufficient depth and detail 

of data to be collected (Section 3.3). 

In the main study, T2 and T3 selected four children from his/her class to form the study 

group. The teachers based their selection on their assessments of the children who 

seemed to have limited perseverance in mathematical reasoning. T2 and T3’s pen 

portraits of the children they selected are detailed in Table 3.5. This approach enabled the 

teachers to draw on their knowledge of the children and shape the study to focus on the 

children that they assessed were in most need of developing perseverance in 

mathematical reasoning. 
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Child’s	
  
name	
  
and	
  
school	
  

Pen	
  portraits:	
  children’s	
  response	
  to	
  activities	
  involving	
  mathematical	
  
reasoning	
  

Alice	
  
School	
  2	
  

In	
  mathematics	
  lessons	
  she	
  is	
  able	
  but	
  reluctant	
  and	
  often	
  disinterested.	
  
She	
  will	
  always	
  look	
  for	
  a	
  quick	
  fix	
  or	
  shortcut.	
  
Can	
  seem	
  fairly	
  non-­‐plussed	
  if	
  her	
  thinking	
  is	
  shown	
  to	
  involve	
  
misconceptions.	
  

Ruby	
  
School	
  2	
  

In	
  mathematics	
  she	
  struggles	
  to	
  verbalise	
  her	
  reasoning.	
  
Will	
  work	
  hard	
  but	
  often	
  needs	
  prompting.	
  
Will	
  happily	
  sit	
  and	
  wait	
  rather	
  than	
  actively	
  attack	
  a	
  problem.	
  
Can	
  be	
  quick	
  to	
  become	
  negative	
  but	
  if	
  encouraged	
  by	
  an	
  adult	
  or	
  peer	
  she	
  is	
  
able	
  to	
  adapt	
  to	
  the	
  situation	
  and	
  refresh	
  her	
  thinking.	
  
Can	
  often	
  simply	
  seem	
  to	
  give	
  up.	
  

David	
  
School	
  2	
  

If	
  a	
  puzzle	
  is	
  too	
  hard	
  and	
  his	
  line	
  of	
  attack	
  or	
  reasoning	
  does	
  not	
  work	
  then	
  
he	
  will	
  often	
  cease	
  in	
  his	
  work	
  and	
  opt	
  out	
  of	
  participating.	
  
Will	
  often	
  need	
  the	
  first	
  few	
  steps	
  laid	
  out	
  for	
  him	
  to	
  successfully	
  solve	
  a	
  
problem.	
  
Often	
  he	
  will	
  rush	
  to	
  find	
  a	
  solution	
  without	
  pausing	
  and	
  reflecting.	
  
He	
  is	
  very	
  quick	
  to	
  denigrate	
  his	
  work	
  and	
  his	
  reasoning.	
  
Can	
  be	
  quick	
  to	
  become	
  negative.	
  

Emma	
  
School	
  2	
  

She	
  needs	
  initial	
  prompting	
  and	
  guidance	
  before	
  beginning	
  mathematical	
  
activities.	
  
Without	
  it,	
  she	
  will	
  often	
  flounder	
  or	
  sit	
  quietly,	
  waiting	
  for	
  the	
  lesson	
  to	
  end.	
  

Michelle	
  
School	
  3	
  

Quite	
  nervy	
  over	
  maths.	
  
More	
  abstract	
  thinking	
  worries	
  her.	
  

Grace	
  
School	
  3	
  

When	
  stuck,	
  she	
  stays	
  stuck.	
  
She	
  doesn’t	
  often	
  ask	
  for	
  help.	
  
She	
  distracts	
  herself	
  with	
  presentation.	
  
She	
  doesn’t	
  get	
  very	
  far	
  anyway	
  at	
  times	
  and	
  this	
  sets	
  her	
  back.	
  
She	
  seems	
  reluctant	
  to	
  start	
  again.	
  
Can	
  be	
  very	
  unresponsive,	
  often	
  seems	
  tired	
  and	
  not	
  engaged.	
  
She	
  needs	
  a	
  lot	
  of	
  encouragement	
  to	
  join	
  in.	
  

Mary	
  
School	
  3	
  

She	
  seems	
  very	
  disconnected	
  in	
  maths,	
  she	
  doesn’t	
  always	
  seem	
  to	
  be	
  on	
  task	
  
or	
  to	
  follow.	
  
If	
  stuck,	
  she	
  can	
  be	
  very	
  distracted.	
  
She	
  needs	
  a	
  lot	
  of	
  help	
  to	
  go	
  back	
  to	
  previous	
  learning.	
  

Marcus	
  
School	
  3	
  

Pen	
  portrait	
  not	
  provided.	
  

Table 3.5: Pen portraits provided by teachers of children's baseline responses to activities involving 
mathematical reasoning 

3.3 Methods of data collection 

Elliot (1991, p.69) argues that an action research approach can be defined as “the study 

of a social situation with a view to improving the quality of action within it”. In my study, we 

sought to implement actions that improved the children’s perseverance in mathematical 

reasoning. The pragmatic epistemology, discussed in Section 3.1.1, was embedded in 

methods of data collection. I had identified specific “ends-in-view” (Dewey, 2003 [1938], 

p.292) for perseverance in mathematical reasoning (the movement between reasoning 

processes culminating in forming generalisations and convincing arguments discussed in 



 83 

Section 2.4.3). I consequently sought methods of data collection to produce valid 

evidence of the extent to which children demonstrated these “ends-in-view”. 

As discussed in Chapter 2 and Section 3.1.2, to evaluate the children’s perseverance in 

mathematical reasoning required qualitative data relating to the children’s: 

• cognition; the mathematical reasoning processes that they applied 

• affect; the emotions they seemed to express during mathematical reasoning activities 

• conation; the extent and focus of the children’s engagement. 

These data arose from the mathematics lessons in which the children engaged in 

reasoning activities; hence these lessons were the primary site of data collection and I 

needed to devise methods to capture these. 

In existing studies, three methods prevail to collect state-related affective data in 

mathematics: the use of video in the mathematics classroom, interview and a combination 

of these. Video seems to present a valuable tool for capturing data pertaining to the state 

aspect of affect in mathematics lessons. Heath (2016, p.312) argues that videoing offers a 

way “to explore everyday activities as they arise in ordinary, naturally occurring settings” 

and provides opportunities to gather data pertaining to verbal and non-verbal action and 

social-interaction. In their studies, Prawat and Anderson (1994), Op’t Eynde and Hannula 

(2006), Schorr and Goldin (2008) and Viitala (2015) filmed children during mathematical 

activity as a means to collect data on both the affective and cognitive domains, and 

transcribed the recordings. Schorr and Goldin (2008) encoded the transcription for key 

affective events based on their theoretical framework. Prawat and Anderson (1994), Op’t 

Eynde and Hannula (2006) and Viitala (2015) also interviewed the children, endeavouring 

to do this directly following the lesson. Prawat and Anderson (1994) and Op’t Eynde and 

Hannula (2006) used a Video Based Stimulated Recall Interview approach in which they 

replayed the filmed lesson to stimulate children to reflect on their actions, feelings and 

thoughts. 

These studies utilised the potential of video and video in conjunction with interview as a 

means to collect data on the affective domain in situ and directly after mathematics 

lessons. However, the approaches also raise questions about how I could use video as a 

data collection tool in practice and in the context of an intervention study. There were two 

points of potential difficulty: 

1. Analysing video data for cognitive, affective and conative components would require 

the films to be transcribed. This is time consuming; Schorr and Goldin (2008) used a 

team of researchers to transcribe video data in their study. As I was the sole resource 

available to do this in my research, the time required to transcribe would have 
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impacted on the timing of subsequent lessons in the research and this would have 

created the risk of the study losing momentum. 

2. Op’t Eynde and Hannula (2006) used video to capture affective data in the 

mathematics classroom and immediately used extracts from this in the follow up 

interviews. If I was to use interview data to triangulate the data collected during the 

lesson, the children needed to be able to choose to discuss any aspect of the lesson, 

rather than the parts pre-determined by the researcher’s choice of video extract. 

Providing the children with this choice, or replaying the recorded films in full to 

stimulate the children’s recall would have lengthened the interviews, and impacted on 

the time that the children were absent from lessons. This interruption to learning 

presented a potential ethical issue (Section 3.5.3) and precluded my use of video to 

stimulate recall in the interview. 

However, video captures information about what the children say, their actions, and what 

they create. In seeking alternative approaches, I tried to replicate these qualities. 

Consequently, the tools I developed for in-class data collection comprised making 

observation notes (Section 3.3.1), taking photographs of mathematical representations 

that they made (Section 3.3.3), and audio recording children’s dialogue and utterances 

(Section 3.3.2). These data were then triangulated with data collected through 

interviewing children (Section 3.3.4) immediately following the observed mathematics 

lessons. 

Fredricks et al. (2004) argue that observation can also be used to assess engagement but 

caution that this approach may provide limited information about the quality of the efforts, 

participation and thinking. I sought to minimise this in two ways. First, by triangulating 

observational with interview data, as described above. Second, by triangulating conative 

with cognitive data to enable judgements to be made about the impact of conation. 

My approach to seeking workable alternatives to the use of video and overcoming some 

recognised problems with observation reflects the pragmatic stance that I adopted. 

In Section 3.1.2, I argued that collaboration with the teachers was central to the success 

of this research, in planning, enacting and reflecting on the interventions and evaluating 

the impact of the whole project on the children in the study group. The final source of data 

collection in this study was to gather the teachers’ evaluations of the impact of the 

interventions on the children’s perseverance in mathematical reasoning. 

Table 3.6 summarises how each method of data collection was used and the following 

four sections detail how the data collection methods were applied. 
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Data	
  
collection	
  
method	
  

Data	
   Initial	
  presentation	
  of	
  
raw	
  data	
  

Observation	
  
during	
  
mathematics	
  
lessons	
  

• Cognitive	
  domain:	
  children’s	
  use	
  of	
  
mathematical	
  reasoning	
  processes	
  

• Affective	
  domain:	
  children’s	
  facial	
  
expressions	
  and	
  body	
  language	
  

• Conative	
  domain:	
  the	
  ways	
  the	
  children	
  
engage	
  with	
  the	
  activity	
  (or	
  other	
  activities)	
  
and	
  their	
  focus	
  

Transcripts	
  of	
  lessons	
  
incorporating	
  audio	
  
recordings,	
  observation	
  
notes	
  and	
  photographs	
  

Audio	
  
record	
  of	
  
mathematics	
  
lessons	
  

• Cognitive	
  domain:	
  children’s	
  dialogue	
  in	
  
relation	
  to	
  mathematical	
  reasoning	
  
processes	
  

• Affective	
  domain:	
  oral	
  expressions	
  and	
  
utterances	
  

• Conative	
  domain:	
  children’s	
  dialogue	
  
relating	
  to	
  their	
  engagement	
  and	
  focus	
  

Photographs	
  
taken	
  during	
  
mathematics	
  
lessons	
  

• Cognitive	
  domain:	
  mathematical	
  
representations	
  created	
  by	
  children	
  

Audio	
  
record	
  of	
  
interview	
  of	
  
children	
  
following	
  
mathematics	
  
lessons	
  

• Cognitive	
  domain:	
  children’s	
  explanations	
  
of	
  their	
  mathematical	
  reasoning	
  

• Affective	
  domain:	
  children’s	
  expressions	
  of	
  
the	
  emotions	
  they	
  experienced	
  during	
  the	
  
lessons	
  

• Conative	
  domain:	
  children’s	
  explanations	
  of	
  
what	
  they	
  focused	
  on	
  and	
  were	
  engaged	
  by	
  
in	
  the	
  lessons	
  

Transcripts	
  of	
  
interviews	
  	
  

Audio	
  
record	
  of	
  
evaluation	
  
meetings	
  
with	
  
teachers	
  

Teacher’s	
  evaluation	
  of	
  
• The	
  changes	
  they	
  noted	
  in	
  the	
  study	
  

children’s	
  perseverance	
  in	
  mathematical	
  
reasoning,	
  including	
  surprising	
  or	
  
undesirable	
  outcomes	
  

• What	
  they	
  regarded	
  as	
  effective	
  and	
  why	
  
• What	
  they	
  regarded	
  as	
  ineffective	
  and	
  why	
  
• The	
  impact	
  on	
  their	
  practice	
  

Transcripts	
  of	
  excerpts	
  
of	
  evaluation	
  meetings	
  

Table 3.6: Data collected from each method 

3.3.1 Observation 

The teachers and I jointly planned the outline of the lessons and had a shared 

responsibility for the pedagogic choices; the purpose of the observations was to determine 

the impact of these choices on children’s perseverance in mathematical reasoning. 

Hence, my observations during the lessons focused on the children’s learning rather than 

the teaching. This is a similar to the rationale and style of observation used in Lesson 

Study (Lewis, 2009). 

One possible concern arising from my chosen data collection methods is the Hawthorne 

effect; my very presence in the children’s mathematics lessons, even though I was not 
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actively involved, could affect what happened. However, I was the sole observer in all 

lessons in the study, so the effect of my presence was consistently applied. In their study, 

Schorr and Goldin (2008) were similarly concerned with observer impact reporting that the 

children showed initial interest in the camera but that this quickly waned. This led me to 

use the BL as an opportunity to acclimatise the children to my presence and the 

mechanisms for data collection and thus to minimise my impact in subsequent lessons. 

Whilst I acknowledge that my “very presence […] affects or contributes to the dynamics of 

the context” (Lankshear and Knobel, 2004, p.225), I sought to minimise this by adopting a 

non-participant approach to observation (Lankshear and Knobel, 2004) in which I 

endeavoured to observe without interacting with the children. In adopting a non-participant 

role I could not avoid interaction with the children; for example, I greeted the class and 

checked that the study children consented on that day to my observations of them 

(Section 3.5.1). I was alert to the potential for observer effect, and followed Newby’s 

(2010, p.381) advice to “assess [its] significance” in drawing research conclusions. 

Swann (2003, p.29) describes the need to seek “mismatches (actual or anticipated) 

between […] expectation and experience” and argues that this is a necessary aspect of 

increasing learning. Consequently, I sought to establish practices that helped me to 

remain open to surprising or unexpected outcomes. I used what Gillham (2008) refers to 

as a semi-structured approach to the observations; this comprised focusing on the 

behaviours and dialogue pertinent to the research focus whilst remaining open to the 

children’s responses. In recognition of the “open” nature (Gillham, 2008, p.19) of the 

children’s responses, I designed a page layout to record field notes (Table 3.7) based on 

Lankshear and Knobel’s model (2004, p.231). This assisted me to develop reflexive 

awareness by separating what I directly observed or heard from the judgements and 

inferences that I inevitably made. This helped to “guard against the [researcher’s] natural 

tendency” (Hopkins, 2002, p.71) to be too quick to make a judgement or to seek evidence 

confirming my conjecture. 

My main method for capturing data pertaining to the children’s body language and facial 

expressions was note taking (for ethical reasons, I was unable to use photographs to 

capture these data, see 3.4.2). In addition, in the pilot, I found that the most difficult 

observation data to record systematically pertained to the affective and conative domains 

and concerned indicators of children’s emotions and engagement. Consequently, I 

needed to ensure that the layout of my observation notes aided my focus on collecting 

these data. To do this, I created distinct columns to separate the observations of 

children’s cognition from those pertaining to conation and affect (Table 3.7), this acted as 

a prompt to record these data whilst observing the lessons. The layout of the observation 
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notes, and in particular the columns for noting the time and photograph number, were 

particularly valuable in the subsequent synthesis of audio, photographic and handwritten 

observational data. 

Date Location  Class  Research lesson number    

Time Observation of 
cognition 

Photo-
graph 
number 

Observation of affect 
and conation 

 

Theoretical and 
analytical notes 
record 

 Map	
  of	
  where	
  children	
  
are	
  sitting	
  
Actions,	
  manipulations	
  
of	
  representations	
  
• Mathematical	
  
dialogue:	
  what	
  is	
  said	
  
and	
  by	
  whom	
  

• Who	
  listens	
  
• How	
  others	
  respond,	
  
build	
  on,	
  ignore,	
  
contradict	
  	
  

	
   Body	
  language	
  
Non-­‐verbal	
  behaviour	
  
Facial	
  expression	
  
Affective	
  sounds:	
  what	
  is	
  
uttered	
  and	
  by	
  whom	
  
	
  

Theoretical	
  
interpretation	
  
Reflexive	
  
comments	
  
My	
  inferences	
  /	
  
judgements	
  
Questions	
  for	
  
follow	
  up	
  interview	
  
Comments	
  on	
  
method	
  

Table 3.7: Layout of observation notes for main study 

3.3.2 Audio record of lessons 

To capture the children’s dialogue during lessons, I audio recorded the study groups 

during their engagement with the activities. The children’s talk and utterances provided 

important data about the reasoning processes that they used and it captured non-verbal 

audible data such as intakes of breath, sighing or clapping. By capturing these on an 

audio recorder, I was able to focus my observations and note taking on the children’s 

manipulation of representations, their body language and facial expressions. 

3.3.3 Photographs 

Gray (2009) argues that, in an action research study, photographs can be used to capture 

evidence during the action phases, support recall of events and stimulate discussion 

during the review phases. In this research I utilised photographs in all of these ways. 

Throughout the pilot study, as I realised the value of photographic data, I increasingly took 

photographs of the representations that the children created during their mathematical 

activity. These reflected the children’s process of construction as well as the final forms of 

their representations. The photographs augmented my observational note taking, 

eradicating the need for detailed description of the children’s creation of representations 

and contributed to the quality of the transcript of the observed lessons and interviews. As 

a data gathering tool, photographs formed a powerful method in this research. 
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To minimise disruption to the flow of the observed lessons whilst taking photographs, I 

used a compact camera with all sounds and the flash turned off. To ensure anonymity 

(Section 3.5.1), none of the photographs captured the children’s faces. I used my own 

observations to capture data on children’s affective response through their facial 

expressions. 

Printed versions of the photographs supported the teachers and me to recall events 

throughout the study and this stimulated focused evaluation at the end of the study. 

3.3.4 Interviews 

The purpose of using interviews was fourfold. To: 

• check my understanding of what I had observed, particularly in cases where the 

children had engaged in periods of silent mathematical activity 

• gain the children’s interpretation of what had happened and why 

• explore the extent of the children’s mathematical reasoning 

• explore any potential barriers to perseverance in mathematical reasoning to inform 

subsequent interventions. 

In order to maximise the children’s recall of events and feelings in the lesson, I 

interviewed the children immediately after each observation in the pairs they had worked 

in during the lesson. As I wanted the children to determine the focus of discussion in the 

interviews, drawing on their activity in the lessons, I did not prepare a detailed interview 

schedule. Instead, I adopted a semi- or part-structured interview (Drever, 2003; Hobson 

and Townsend, 2010) approach, using the four areas outlined above to inform open 

questioning and prompts. This enabled me to cover the topics I wanted whilst providing 

scope for the children to “talk about what [was] significant to them, in their own words” 

(Hobson and Townsend, 2010, p.231). Table 3.8 details the interview schedule. 

In the event, the children frequently volunteered responses without a prompt. Gillham 

(2005) argues that organisation and sequencing of questions is important to enable the 

content of the questions to make sense. I organised the questions into the sequence in 

Table 3.8 as during the pilot this seemed to enable the children’s responses to flow. 

Research interviews are what Kvale (1996, p.14) refers to as “construction sites for 

knowledge” in which the interviewer and interviewees co-construct understanding. I 

adopted a style of interviewing that utilised this co-construction. In exploring the extent of 

children’s mathematical reasoning by asking the questions focusing on cognition, I used 

follow up questions that could be likened to a scaffolding (Wood et al., 1976) pedagogy, 

such as did you see a pattern? This facilitated the children to continue to construct and 

verbalise mathematical reasoning if such understanding was within their proximal zone of 
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development (Vygotsky, 1978). It provided valuable data in relation to the research 

questions, as it illuminated the children’s capacity to reason mathematically. This could 

then be contrasted with the children’s reasoning observed during the lesson. In the 

instances where the children seemed to achieve more extensive reasoning in the post-

lesson interview than during the lesson, it provided insights into how we might adapt the 

interventions to achieve this more readily during the lesson. I elected not to use 

scaffolding lines of questioning following RL3, as the teachers and I planned that the 

children would continue this activity in RL4 and I wanted to minimise any impact that my 

lines of questioning might have on their mathematical reasoning. 

Lines	
  of	
  questioning	
  following	
  observed	
  lessons	
  
Affect:	
  
• What	
  was	
  the	
  lesson	
  like?	
  
Cognition	
  
• What	
  did	
  you	
  find	
  out?	
  
• Why	
  is	
  that?	
  How	
  do	
  you	
  know?	
  
• Additional	
  scaffolding	
  questions	
  related	
  to	
  the	
  activity	
  to	
  elicit	
  reasoning	
  
Focus	
  on	
  key	
  affective	
  moments:	
  
• When	
  you	
  [affective	
  indicator,	
  eg	
  talked	
  quickly	
  about…],	
  tell	
  me	
  about	
  what	
  you	
  were	
  

thinking.	
  
Perseverance:	
  
• Were	
  there	
  any	
  times	
  when	
  you	
  weren’t	
  sure/felt	
  stuck/were	
  finding	
  this	
  difficult?	
  Tell	
  

me	
  about	
  that.	
  
Table 3.8: Semi-structured interview schedule 

To enable me to focus on what the children said and did in the interviews, I audio 

recorded each interview and took photographs of any representation that they created or 

manipulated. As with the lesson data, I created transcriptions of the audio record and 

photographs on the same day as the interviews took place; this immediacy supported 

ease of interpretation (Gillham, 2005). 

To support the children’s recall of events, the interviews took place as soon after the 

lesson as possible, typically after a fifteen-minute break. For ethical reasons (Section 

3.5.3) I strived to ensure that the interviews were less than fifteen minutes and in practice 

I achieved this comfortably. 

Interviewing the children in the pairs in which they had worked during the lesson 

supported them to give deep descriptions and analysis by building on or disputing each 

other’s ideas (Hopkins, 2002) whilst enabling me to focus in depth on individual 

responses. 

3.3.5 Evaluation meetings with teachers 

Evaluation meetings with each teacher took place following each lesson, with the final 

meeting also serving to evaluate the whole project (Figure 3.2). This final meeting was 
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simultaneously part of data collection and the start of analysing the impact of the study. 

Somekh (2006) argues that the holistic nature of the data collection and analysis, such as 

we utilised, is a feature of an action research approach. 

The final evaluation meeting with each teacher created the opportunity to engage with the 

final stage of Swann’s (2003; 2012) PBM, to review the interventions that we had applied 

and begin to evaluate their impact on the study groups’ perseverance in mathematical 

reasoning. I was mindful of achieving an ethical balance between minimising the use of 

each teacher’s time and taking sufficient time to provide scope for co-construction of our 

reflections and the potential development of “inter-subjective agreement” (Hammond, 

2013, p.609). To help to achieve this balance, I sought to focus our reflections on the 

efficacy of our interventions. I prepared a short list of the topics that we might address at 

the evaluation meeting (Table 3.9) and emailed this to the teachers in advance. I audio 

recorded these meetings to negate the need for note taking and to facilitate free-flowing 

conversation. 

1. What improvements, if any, did you notice in the study group’s perseverance in 
mathematical reasoning? Any surprising or undesirable outcomes within or beyond the 
research lessons? 

2. What do you think worked and why? 

3. What do you think didn’t work and why? 

4. What, if anything, have you gained from this process? Is there anything you will seek to 
apply or continue to apply in the future either 

a. in your own teaching? 

b. in developing the subject within your school? 

5. Anything else that you consider important? 

Table 3.9: Proposed discussion topics for the evaluation meetings 

3.4 Methods of data analysis 

To analyse the data collected in this study, I adopted the processes that Bathmaker 

(2010) argues are relevant to the analysis of qualitative data. First, I engaged closely with 

raw data; this began at the point of data collection during the lesson observations and 

interviews, and continued as I transcribed, collated and applied codes to the data. Next, I 

interpreted the data by looking for what Saldaña (2016) describes as patterns, similarities 

and differences and possible causations. This involved going beyond the outcomes 

(Bathmaker, 2010), in this case the extent to which the children were able to persevere in 

mathematical reasoning, by attaching meaning to the relationships I noted in the data. 

The third stage involved interpreting the data within theoretical frames and theorising from 

this. 
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Because I adopted a pragmatic stance to the generation of knowledge that emphasises 

the relationship between theory and practice (discussed in Section 3.1.1), I utilised 

existing theoretical and research knowledge to inform what counts as relevant (Dewey, 

2003 [1938]) and guide my approach to analysing data. This influenced the layout of 

transcriptions, the design of analytic codes and the creation of diagrammatic 

presentations of analysis. 

3.4.1 Preparation of data 

In our evaluation meetings following each lesson, the teachers and I sought “inter-

subjective agreement” (Hammond, 2013, p.609) about the impact of the interventions. To 

enable the teachers to do this, it was important that they were able to engage with data 

collected during the lessons and post-lesson interviews. In addition, if the study was to 

gather momentum from one cycle to the next, the teachers needed to have the data as 

soon after the lesson as possible. The data presented for analysis and the raw data they 

were generated from are detailed in Table 3.10. 

A key consideration in qualitative studies is to determine how much of the data corpus to 

transcribe and identify aspects that can be omitted. Saldaña (2016) advises novices of 

qualitative research to transcribe and code all the data corpus, to develop the experience 

to determine which data are important. This was one reason why I began by transcribing 

all the data that I was able to relating to the observations and interviews. However, the 

main reason for this was my focus on the three domains of cognition, conation and affect; 

these aspects were woven through the data and to omit a section of data risked missing 

what might be important interplay between them. Consequently, transcribing all data 

remained the approach that I adopted throughout.  
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Data	
  source	
   Raw	
  data	
   Synthesised	
  data	
  presented	
  
for	
  analysis	
  

Observations	
  of	
  
children	
  whilst	
  
engaging	
  in	
  
mathematical	
  
activity	
  

My	
  handwritten	
  observation	
  
notes	
  
Audio	
  recording	
  of	
  children’s	
  
dialogue	
  during	
  lesson	
  
Photographs	
  of	
  children’s	
  
practical	
  and	
  written	
  work	
  

Audio	
  recordings	
  transcribed	
  
into	
  Excel	
  document,	
  augmented	
  
with:	
  
• data	
  from	
  handwritten	
  
observation	
  notes	
  

• photographs	
  of	
  children’s	
  
practical	
  and	
  written	
  work	
  

See	
  Appendix	
  3.2	
  for	
  an	
  example	
  
of	
  a	
  coded	
  transcript	
  

Interviews	
  with	
  
children	
  

Audio	
  recordings	
  of	
  interviews	
  
Photographs	
  of	
  children’s	
  
practical	
  and	
  written	
  work	
  

Audio	
  recordings	
  transcribed	
  
into	
  Excel	
  document,	
  augmented	
  
with	
  photographs	
  of	
  children’s	
  
practical	
  and	
  written	
  work	
  
drawn	
  on	
  by	
  the	
  children	
  during	
  
the	
  interview	
  

Meetings	
  with	
  
teachers	
  

Teachers'	
  pen	
  portraits	
  of	
  study	
  
group	
  
Audio	
  recording	
  of	
  dialogue	
  
during	
  final	
  evaluation	
  meeting	
  

Pen	
  portraits	
  (Table	
  3.5)	
  
Transcribed	
  excerpts	
  of	
  final	
  
evaluation	
  meetings	
  

Table 3.10: Data available for analysis 

I elected to do the transcription myself and on the same day that the data were collected 

as this supported ease of synthesis of the raw data. Whilst Gray (2009, p.496) recognises 

that transcription is “time consuming and laborious” he also argues that “it does develop a 

familiarisation with the data at an early stage”; this was important as I needed to be able 

to reflect on the impact of our interventions in readiness for the evaluation meetings. 

Gibson (2010, p.297) describes this early engagement with data through transcription as a 

fundamental aspect of the analysis process in which researchers give sense to and 

interrogate their data 

Having elected to transcribe all data, I used what Gibson (2010) describes as an 

unfocused approach to transcription in that I tried to represent what was said or done 

rather than focusing in detail on how excerpts of discourse were produced. However, data 

relating to facial expression, tone of voice and body language were important as they 

pertained to the affective and conative domains. Hence I augmented the unfocused 

transcription with these data. The transcribed extract in Figure 3.4 exemplifies how the 

transcription synthesised speech with body language and tone of voice. 

182	
   	
   David	
  yawns	
  and	
  props	
  his	
  head	
  in	
  his	
  hand	
  with	
  his	
  elbow	
  on	
  the	
  table	
  
183	
   David	
   How	
  do	
  you	
  do	
  this?	
  [said	
  in	
  exasperated	
  and	
  resigned	
  tone	
  of	
  voice]	
  
190	
   	
   David	
  leans	
  back,	
  body	
  positioned	
  low	
  in	
  chair	
  
194	
   David	
   I	
  don’t	
  get	
  it	
  [said	
  in	
  a	
  cross	
  tone	
  of	
  voice]	
  
199	
   David	
   [to	
  the	
  teacher]	
  It's	
  impossible.	
  I	
  don't	
  get	
  it.	
  Can	
  you	
  give	
  us	
  a	
  clue?	
  

Figure 3.4: Example of transcription approach 
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In the pilot study, I had transcribed the final evaluation meeting with T1. Engagement with 

this process provided me with the experience that Saldaña (2016) reasons is needed to 

make decisions on what is not required from the data corpus; I found that full 

transcriptions of these meetings were not needed. Consequently, in the main study, I 

identified the relevant text through listening to the audio recordings and making summary 

notes, and transcribed the relevant excerpts. 

In order to facilitate later coding and sorting according to code (Section 3.4.2), all 

transcriptions were created in a bespoke Excel document that I had designed for the 

purpose. I separated the data into short units and presented each unit in its own cell (see 

Appendix 3.2 for an example). 

3.4.2 Development and application of codes and analysis 

The transcription process generated considerable detailed data and I needed a means to 

find key moments in the data that informed my understanding of the impact of the 

interventions on children’s perseverance in mathematical reasoning. To do this, I created 

a suite of codes and applied this to the data. This enabled me to describe the data using 

what Gray (2009, p.456) calls “shorthand ways” which I could then use to collate the data 

into groups using filtering and sorting strategies. 

I applied the findings from literature, discussed in Sections 2.1, 2.4 and 2.2 to create three 

coding categories: cognition, conation and affect. 

As I had generated a conjecture about what might happen following the initial intervention 

(Sections 1.4 and 3.2.4), within each category, I created what Saldaña (2016, p.294) 

refers to as hypothesis codes: 

[a] researcher generated, pre-determined list of codes […] specifically to assess a 

researcher-generated hypothesis. The codes are developed from a theory/prediction about 

what will be found in the data before they have been collected or analyzed. 

I applied one other approach to code creation for the cognition category: process coding 

(Saldaña, 2016). The cognition category comprised codes that related to mathematical 

reasoning processes, for example, conjecturing and generalising. Each of these reasoning 

processes can be described using gerunds, a verb which functions as a noun, and this 

was particularly apt as it illuminated processes through the course of the lesson and how 

they “occur in particular sequences” (Saldaña, 2016, p.296). 

I applied the pragmatic philosophical stance adopted for this study to the creation of 

analytic codes through seeking to bridge the divide between theory and practice and 

having “ends-in-view” (Dewey, 2003 [1938], p.292) to guide observation and inform what 
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counts as relevant. Hence, in the cognition and conation categories, I subdivided each 

code into more finely graded sub-codes; each sub-code arose from the research literature 

discussed in Sections 2.1 and 2.4 (detailed in Tables 3.11, 3.12). There were two 

exceptions to this approach to the generation of sub-codes. In the conative category, I 

included two sub-codes that arose from my observations of how children demonstrated 

non-engagement with mathematical reasoning (Table 3.12, codes 1b and 1c). In a 

pragmatic approach, knowledge is developed through finding resolutions to an existential 

problem (Hammond, 2013) and this coding approach was important as it helped to identify 

specific points in the reasoning process when children experienced difficulties in 

persevering. 

In the affective category, I used only one code to denote the affective domain, adopting 

Schorr and Goldin’s (2008) notion of a key affective moment. Saldaña (2016) advocates 

the use of emotion coding which seeks to label the emotions experienced by the child or 

inferred by the researcher, and the use of this might have led to a series of sub-codes 

denoting emotions. However, DeBellis and Goldin (2006, p.142) argue that encoding a 

particular affective response onto what a child says or does is a “tremendous 

oversimplification”, so I sought to avoid inferring a child’s feelings at the point of coding. 

However, to support coding (and also data collection) in relation to affect, I created a list of 

potential observable indicators (Table 3.13).  
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Coding	
  category	
  1:	
  cognitive	
  events	
   	
  

1. Specialising	
  
a)	
  Random	
  trials	
  

Codes	
  generated	
  
from	
  literature	
  
discussed	
  in	
  Section	
  
2.1	
  

b)	
  Systematic	
  trials	
  
c)	
  Artful	
  trials	
  

2. Spotting	
  patterns	
  and	
  
relationships	
  

a)	
  Develops	
  awareness	
  of	
  patterns	
  and	
  
relationships	
  

3. Conjecturing	
  
a)	
  Forms	
  conjecture	
  
b)	
  Tests	
  conjectures	
  
c)	
  Adjusts	
  conjecture	
  

4. Generalising	
  
a)	
  Empirical	
  generalisation	
  
b)	
  Structural	
  generalisation	
  

5. Convincing	
  

a)	
  Considers	
  why	
  a	
  
trial/conjecture/generalisation	
  might	
  
be	
  true/false	
  
b)	
  Uses	
  logical	
  language	
  constructs	
  in	
  
argument	
  
c)	
  Argument	
  anchored	
  in	
  relevant	
  
mathematical	
  properties	
  
d)	
  Argument	
  based	
  on	
  data	
  (has	
  
warrant)	
  

Table 3.11: Codes for category 1 — cognitive events 

Coding	
  category	
  2:	
  conative	
  events	
   	
  

1. Engagement	
  	
  

a)	
  Engagement	
  with	
  task	
  involving	
  
reasoning	
  

Code	
  1	
  and	
  sub-­‐
codes	
  1a,	
  d,	
  e	
  and	
  f	
  
generated	
  from	
  
literature	
  discussed	
  
in	
  Section	
  2.4	
  
	
  
Sub-­‐codes	
  1b	
  and	
  c	
  
generated	
  through	
  
observations	
  of	
  how	
  
children	
  
demonstrated	
  
limited	
  engagement	
  
with	
  activity	
  	
  

b)	
  Engagement	
  with	
  own	
  derivative	
  of	
  
task	
  (limited	
  mathematical	
  reasoning)	
  
c)	
  Disengagement	
  with	
  
activity/disruptive	
  actions	
  
d)	
  Responding	
  to	
  teacher	
  
questions/requesting	
  teacher	
  
e)	
  Engages	
  with	
  outcomes	
  of	
  class	
  
discussion	
  by	
  applying	
  ideas	
  from	
  
whole	
  class	
  discussion	
  into	
  own	
  
thinking	
  
f)	
  Engagement	
  with	
  whole	
  class	
  
discussion	
  or	
  teacher	
  input	
  
g)	
  Engagement	
  in	
  own	
  work	
  during	
  
whole	
  class	
  discussion	
  

2. Repetition	
  of	
  one	
  type	
  of	
  reasoning	
  process	
   Codes	
  generated	
  
from	
  literature	
  
discussed	
  in	
  Section	
  
2.4	
  

3. Progression	
  between	
  mathematical	
  reasoning	
  processes	
  

4. Self-­‐regulatory	
  
processes	
  

a)	
  Meta-­‐cognition	
  	
   Codes	
  generated	
  
from	
  literature	
  
discussed	
  in	
  Section	
  
2.4	
  

b)	
  Meta-­‐affect	
  	
  

Table 3.12: Codes for category 2 — conative events 
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Coding category 3: affective events 

Code Indicators  

Demonstration	
  of	
  affect	
  
	
  

Affect	
  or	
  change	
  in	
  affect,	
  eg:	
  
• Change	
  in	
  speed	
  of	
  speech	
  
• Urgency	
  to	
  respond	
  to	
  teacher	
  

questioning	
  
• Urgency	
  to	
  manipulate/interact	
  

with	
  representations	
  
• Declaration	
  of	
  ‘aha’	
  moment	
  
• Facial	
  expressions	
  (lowers	
  

eyebrows,	
  smiling,	
  pursing	
  lips…)	
  
• Expressions	
  of	
  emotion	
  expressed	
  

through	
  speech	
  or	
  inferred	
  through	
  
facial	
  expression	
  and	
  body	
  language	
  
(eg	
  expressions	
  of	
  frustration,	
  
pride,	
  satisfaction,	
  pleasure)	
  

• Change	
  in	
  body	
  position	
  (eg	
  leaning	
  
forward/back,	
  folding	
  arms,	
  hands	
  
on	
  head/face/chin)	
  

• Change	
  in	
  sight	
  line	
  (eg	
  looking	
  up,	
  
out	
  of	
  the	
  window,	
  at	
  someone	
  
else’s	
  work)	
  

Code	
  and	
  indicators	
  
generated	
  from	
  
literature	
  discussed	
  
in	
  Section	
  2.2	
  

Table 3.13: Codes for category 3 — affective events 

To facilitate filtering and sorting the coded data, I created three additional columns in 

Excel adjacent to the transcribed data, one for each coding category and coded data 

using the number system evident in Tables 3.11–3.13 (for example a datum would be 

coded 3a in column 1 if it related to forming a conjecture). The use of Excel with this 

layout and coding labels facilitated sorting and filtering the data and hence supported the 

next phase of analysis: seeking patterns, comparing and summarising. 

To facilitate comparing data, I used Saldaña’s (2016) idea, to create a series of simple 

tables to capture a summary of the data for each child within each observed lesson. The 

example in Appendix 3.3 illustrates how I summarised the data within each coding 

category and how I used this summary to capture our initial analysis of the data and our 

recommendations for the subsequent research lesson. By comparing these summaries 

across all eight children in the main study, I was able to engage in the final phase of 

analysis; to review the impact of our interventions (the final stage of Swann's PBM (2003; 

2012) and “to take stock and ask: what has changed” (Townsend, 2010, p.141). In this 

phase, I interpreted the data by looking for patterns, similarities, differences, counter-

examples and possible causations and I sought similarities and differences between the 

study children. 



 97 

3.4.3 Diagrammatic presentation of data analysis 

To support the narrative presentation of the findings from data analysis and, in particular, 

to illuminate and theorise about any potential interplay between cognition, affect and 

conation, I sought to utilise a diagrammatic approach. I was not able to locate any 

previous studies in this or related fields that had explored this approach. Since Reason 

and Bradbury (2008) argue that an action research orientation is creative, I sought to 

develop an approach to the presentation of findings from data analysis to illustrate any 

interplay between the three psychological domains. 

In Section 2.4.2, I argued that perseverance in mathematical reasoning results in 

movement between reasoning processes, and that this movement can be represented 

diagrammatically. I created a diagrammatic representation (Figure 3.5) of a potential 

pathway of the reasoning processes that could be adopted in the pursuit of line of 

mathematical reasoning. 

 

Figure 3.5 [and 2.2]: Potential pathway showing reasoning processes in pursuit of line of mathematical 
reasoning 

This diagram formed the basis for representing the findings from data analysis pertaining 

to the extent of the children’s perseverance in mathematical reasoning. It illustrates 

perseverance in mathematical reasoning by representing the movement between 

reasoning processes. This pathway in Figure 3.5 could represent the successful pursuit of 

a line of a mathematical enquiry that results in the formation of a generalisation and 

convincing argument. 

In Chapter 4, I adopt this diagrammatic approach to present my analysis of the children’s 

cognition through a focus on the reasoning processes used. In Chapters 5 and 6, I 

augment these diagrams to include representations of the children’s affect and conation 

and to illustrate the interplay between cognition, affect and conation. 

3.5 Ethical design of study 

Action research is an approach that intentionally applies change to a situation (Reason 

and Bradbury, 2008), hence the potential unintended impact on children and professionals 

needs prior consideration. In her PBM, Swann cautions that there is a need to be 

mindful of the potential not only for desirable intended consequences but also for 

consequences that are unintended and potentially undesirable. 

(2003, p.31) 

Form convincing 
argument Generalise Specialise Spot 

pattern 
Form, test, 

adjust conjecture 
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I needed to ensure that the research was ethically designed and maintain ethical 

awareness throughout about my approach and its impact on the teachers, the children in 

the study groups, the children in the class and me. 

I had opted for an approach that involved designing, implementing and evaluating 

interventions for the improvement of practice. These actions are typical of the role of a 

primary teacher; observing and talking to children, and photographing their work is a 

normal part of this practice. Indeed, photographing children’s practical and written work is 

a routine part of primary school assessment practice. The intentions and methods in this 

study were thus consistent with typical practices in English primary schools, although I 

was using these for research purposes, with the intention of improved outcomes for 

children. 

The following sections discuss how this study sought to conform to ethical practices 

relating to autonomy and informed decision-making, justice and fairness to the people 

involved and the principles of doing no harm and doing good (BERA, 2011). 

3.5.1 Informed consent 

Participating	
  teachers	
  

As discussed in Section 3.2, I conducted the study in three primary classes, in different 

schools. I recruited three class teachers to take part in the study. Following the teachers’ 

oral expressions of interest, I emailed them a short explanation of the study and invited 

confirmation of their interest and involvement (see Appendix 3.4). In this initial 

correspondence, I stated my intention to work alongside teachers for whom the research 

question is an etic issue (Stake, 1995). In the main study, I sought to work with two 

teachers whose workplaces were geographically close, to limit time travelling to our 

research meetings for the teachers; hence I took the school location into account prior to 

emailing the teachers. 

I had pre-existing professional and/or academic relationships with each of the teachers, 

and this was perhaps was a favourable element in our choosing to collaborate together. 

However, it also meant that there might have been pre-existing power dynamics between 

the teachers and me and this required consideration. T1 and T2 were graduates of the 

MaST programme and I was a tutor and assessor on this programme, but all teaching and 

assessment processes involving these teachers were completed prior to my approach to 

take part in this research. In a former role, as a mathematics consultant, I had worked 

alongside both T1 and T3. Whilst these relationships were indicative of all four of us being 

part of a local mathematics education community, I could not overlook that the teachers 
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may perceive potential power dynamics and needed to maintain reflexive awareness of 

this. 

Following expressions of interest from each potential teacher, I provided the teacher and 

head teacher, as gatekeeper, with an information sheet (Appendix 3.5) and arranged for 

further discussion with interested parties. I sought informed consent (BERA, 2011) from 

the teachers prior to beginning the fieldwork (Appendix 3.5). 

Children	
  

The teachers selected the study group of children (Section 3.2.5). However, I sought 

informed consent (BERA, 2011) from the parents/carers of all the children in each class. 

This would facilitate changes in the choice of the children who formed the study group 

during the fieldwork should this be needed, for example, because of sample mortality. 

To enable the parents/carers to make informed decisions for their child to take part, I 

provided them with an information sheet (Appendix 3.6). In creating this, I consulted the 

teachers to ensure that the tone and vocabulary was appropriate for the intended 

audience (FREGC, 2011). In addition, I asked the children in the study groups if they were 

willing to have their work photographed, to have their and our conversations recorded and 

to talk with me. 

In accordance with BERA’s guidelines (2011), the consent forms for teachers and 

parents/carers detailed: the teacher’s or child’s right to withdraw from the research at any 

stage; my intention to use audio recording and to photograph work; the anonymity of the 

teachers, children and school in reporting the research. Should a child have exercised 

their right to withdraw during the fieldwork process, I planned to remove and destroy data 

gathered from the child up to the point at which data was aggregated for analysis. Had a 

teacher exercised her/his right to withdraw early in the fieldwork, I intended to seek an 

alternative teacher to take part in the study. If a teacher withdrew once fieldwork was well 

established, I intended to similarly remove and destroy data gathered from the teacher up 

to the point at which data are aggregated for analysis. No-one withdrew from the study. 

From	
  the	
  higher	
  education	
  institution	
  at	
  which	
  I	
  am	
  employed	
  

The HEI within which I work has an extensive partnership with schools in the surrounding 

region; each year, initial teacher education students teach on placements in schools within 

this partnership. Hence, whilst I was an outsider in terms of the schools in which I 

conducted this study, I was an insider in terms of the HEI’s partnership. Homan (2001, 

p.340) highlights the importance of insider researchers not acting as “their own 

gatekeepers”, hence I used the Professional Doctorate Annual Progression Review 
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meetings to brief my Head of School (HoS) with the plans for the study. The first of these 

meetings took place prior to fieldwork and this was an opportune time to discuss the 

processes for my selection of schools in relation to the work of the partnership and to seek 

the HoS’s approval, as gatekeeper for the partnership, for beginning a dialogue with 

teachers in specific schools. Once the fieldwork was underway, I intended to seek further 

dialogue with my HoS should a situation begin to develop that may impact on the 

partnership; no action was needed in relation to this. 

3.5.2 Information handling, confidentiality and anonymity 

I created only one electronic copy of all audio recordings and saved this and the typed 

transcripts and photographs in a password-protected file in a web-based cloud. I had sole 

access to this. The audio recordings will be deleted when the thesis is published. The 

handwritten fieldwork notes were captured in fieldwork journals. They contained no 

mention of the names of the schools and only first names of the teachers and children. In 

the thesis, all names, personal and institutional, have been anonymised. 

3.5.3 Risk of harm and intention to do good 

I ensured, through the information sheet and pre-fieldwork discussions, that the teachers 

and their head teachers were aware of the role of the teacher in the study and the 

associated time commitment. My clear intention was to implement actions that would 

benefit those involved (Willig, 2008). These included: 

• potential learning benefits for all the children in the class as the class teacher and I 

endeavour to implement research based interventions 

• potential professional development benefits for the professionals involved (both the 

teachers and me) though our deep engagement with reflection on and evaluation of 

practice. 

To minimise disruption to the children’s learning, I kept the interviews short and negotiated 

with the teachers an appropriate time to conduct them to minimise disruption in other 

lessons. 

During the interviews with children, I sought to minimise any risk of “emotional stress, 

anxiety or humiliation” (SoE, 2011, Section 4) by not directly asking what the children 

were feeling. Rather I framed this more openly by asking ‘what was the lesson like?’ 

(Table 3.8). In the sole instance in which a child had appeared to experience strong 

negative emotions during the lesson (David in the BL), I elected not to ask further 

questions concerning his feelings. 
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Throughout the research design, I sought to find practical approaches to balancing the 

demands on the teachers with the desire to enable collaboration. One approach that I 

used to foster collaboration was to share my transcripts of the lesson observations and 

interviews with the teachers. Whilst I did not ask that they read these as part of the 

research, their access to these data was valuable for two reasons. First, it facilitated the 

teachers’ capacity to reflect on the impact of our planned interventions should they wish 

to. Second, it helped to minimise effects of a power dynamic between us, by creating a 

sense of openness. However, the transcripts were long and time consuming to read. At 

the mid-point of each study I reminded the teachers that reading them was not requisite to 

their role and asked if they wanted me to continue to provide them; the resounding 

response from all three teachers was how fascinating they found them. T2’s response 

echoed those of T1 and T3 in that he regarded the transcripts as highly beneficial, arguing 

that they revealed 

the secret conversations that children have about what they are actually doing, not what 

you think they are doing. 

Final evaluation meeting with T2 

In the final evaluation meeting with the teachers, we discussed the experience of action 

research in relation to professional development. This enabled us to appraise and realise 

any potential professional development benefits of taking part in the research. 

Professional development gains could be considered to compensate the time given by the 

teachers. 

In the next chapter, I present findings, based on analysis of data, in response to the 

overarching research question: how can primary teachers improve children’s 

perseverance in mathematical reasoning? 
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Chapter 4: The Impact of the Interventions on Children’s 
Reasoning Processes 

The following three chapters comprise presentation, analysis and discussion of data in 

response to the research questions. 

In Chapter 4, I address the overarching research question: how can primary teachers 

improve children’s perseverance in mathematical reasoning? 

In Chapter 5, I build on the analysis and findings set out in Chapter 4 to address the 

research questions: To what extent and how does the interplay between cognition and 

affect impact on children’s perseverance in mathematical reasoning? What impact, if any, 

does the children’s conative focus have on this interplay? 

In Chapter 6, I address the final research question: What difficulties do children need to 

overcome in order to persevere in mathematical reasoning? 

In Section 2.4.2, I defined perseverance in mathematical reasoning as 

striving to pursue a line of mathematical reasoning, during a mathematical activity, despite 

difficulty or delay in achieving success. 

I argued that perseverance in mathematical reasoning results in movement between 

reasoning processes, and that this movement can be represented diagrammatically, for 

example by illustrating the use of cognitive reasoning processes, as in Figure 4.1. 

Throughout this chapter, I use this style of figure to summarise the findings from data 

analysis diagrammatically as a pathway of reasoning processes. 

 

Figure 4.1 [and 2.2]: Potential pathway showing reasoning processes in pursuit of a line of mathematical 
reasoning 

4.1 The baseline lesson 

In the baseline lesson (BL) the teachers and I sought to gather data on the extent to which 

the children in the study group were currently demonstrating perseverance in 

mathematical reasoning (Table 3.5). As the study group were purposively selected for 

their limited perseverance in mathematical reasoning, the BL provided an opportunity to 

assess that the study group comprised appropriate children for this research. 

In the BL, no intervention was applied and the activity, Magic Vs (NRICH, 2015a), 

afforded opportunities for mathematic reasoning (Table 3.2 and Appendix 3.1). Children 
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were provided with an A4 sheet printed with blank Vs, each comprising 5 circles in which 

they could write the numbers 1–5. In this lesson, the teachers taught the classes, 

including the study group, using their regular pedagogic practice. 

The BL showed that only two of the group were able to persevere beyond specialising to 

spotting patterns, and neither of these were able to use the patterns as a platform for 

conjecturing, generalising or forming convincing arguments. These findings affirmed that 

the teachers’ selections of children were apposite for this study. 

4.1.1 The study group’s reasoning processes and the extent of their 
perseverance in mathematical reasoning in the BL 

In both schools, the Magic V problem was introduced by displaying two sets of the 

numbers 1–5 in the formation of a V (Figure 4.2). Each class was told that one of the V 

formations was magic, the other was not. The children were asked to: identify which V 

was magic and their reason for this; explore how to create additional magic Vs and then 

form generalised statements with explanations as to why these were true. 

 

Figure 4.2: Initial problem displayed on board in Schools 2 and 3 

All eight children in the study group began this problem by randomly specialising (Mason 

et al., 2010), that is they arranged numbers in the V randomly. Mason et al. (2010) argue 

that this is a valuable initial approach as it facilitates understanding and getting a feel for 

the problem at a stage when little is known and leads to spotting patterns and systematic 

forms of specialising. However, for six of the eight children, random specialisation 

continued to be their approach to creating trials for the rest of the lesson. During the 

lesson, these six children were not able to create a Magic V in which each arm totalled the 

same value. 

In School 2, Alice and Ruby, David and Emma spent the lesson trying to establish a 

property to determine which V might be magic. They used random specialisation to select 

arithmetic operations and mathematical properties to apply to the Vs. Alice and Ruby 

adopted two approaches to random specialisation and pattern seeking. First they tried 

summing the numbers within individual V arrangements; Photograph 4.1 illustrates how 
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Alice used tally marks to add the numbers. Then they tried to use this total to establish a 

magic number for each V. Alice rejected this idea as both Vs resulted in the same total 

(Excerpt 4.1, line 22); however, neither Alice nor Ruby noted that each V totalled the 

same number because they comprised the numbers 1 to 5. 

 

Photograph 4.1: Alice summed the numbers within one V 

10	
   Alice	
   I	
  think	
  you	
  need	
  to	
  work	
  out	
  the	
  magic	
  number	
  
18	
   Alice	
   So	
  that’s	
  15	
  
19	
   Ruby	
   Why	
  15?	
  
20	
   Alice	
   15	
  is	
  what	
  it	
  adds	
  up	
  to	
  
22	
   Alice	
   But	
  it	
  can’t	
  work	
  because	
  they’re	
  both	
  exactly	
  the	
  same	
  

Excerpt 4.1: BL observation transcript 

Their second idea involved exploring the odd/even property of the numbers in the V and 

the total of the V (Excerpt 4.2). 

122	
   Alice	
   I	
  think	
  I	
  know	
  what	
  you	
  mean	
  by	
  magic,	
  which	
  is	
  odd	
  and	
  both	
  even	
  
123	
   Alice	
   Okay,	
  so	
  we	
  need	
  to	
  try	
  to	
  figure	
  out	
  a	
  number	
  which	
  is	
  both	
  odd	
  and	
  even	
  
130	
   Alice	
   There's	
  more	
  odds	
  
131	
   Ruby	
   [in	
  unison]	
  than	
  even	
  
133	
   Ruby	
   [sharp	
  gasp]	
  Oh	
  we	
  add	
  them	
  
139	
   Ruby	
   And	
  then	
  see	
  if	
  15	
  is	
  an	
  odd	
  or	
  an	
  even	
  
140	
   Alice	
   15	
  is	
  odd	
  
142	
   Alice	
   Wait	
  but	
  we	
  need	
  to	
  prove	
  it,	
  we	
  need	
  to	
  prove	
  15	
  is	
  odd,	
  otherwise	
  it’s	
  	
  
	
   	
   worthless	
  
Discussion	
  with	
  T2	
  
206	
   Alice	
   We	
  done,	
  5	
  is	
  odd,	
  3	
  is	
  odd,	
  1	
  is	
  odd	
  and	
  4	
  and	
  2	
  are	
  even	
  so	
  only	
  2	
  even	
  and	
  3	
  
	
   	
   odd	
  
208	
   T2	
  	
   I	
  like	
  that,	
  so	
  we've	
  got	
  3	
  out	
  of	
  5…	
  
209	
   Alice	
   [interrupting]	
  And	
  we're	
  trying	
  to	
  find,	
  we	
  thought	
  the	
  magic	
  number	
  might	
  	
  
	
   	
   be	
  something	
  that	
  is	
  both	
  odd	
  and	
  both	
  even	
  
210	
   T2	
   Okay,	
  so	
  you've	
  got	
  a	
  theory,	
  did	
  you	
  try	
  this	
  out?	
  
212	
   Alice	
   So	
  then	
  we	
  added	
  them	
  up.	
  We	
  added	
  them	
  up	
  altogether	
  and	
  they	
  make	
  15	
  	
  
	
   	
   and	
  then	
  we	
  thought	
  10	
  goes	
  into	
  it	
  and	
  so	
  does	
  5,	
  and	
  10	
  is	
  even	
  and	
  5	
  is	
  odd	
  

Excerpt 4.2: BL observation transcript 

They established that there were more odd numbers in the V arrangement than even 

numbers; this is a significant line of enquiry in this activity. However despite T2’s 
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endorsement of this approach (line 208), Alice and Ruby did not pursue it further. Instead 

they continued with their idea that a number could be both odd and even. Whilst this was 

mathematically flawed, Excerpt 4.2 provides evidence of their awareness and attempted 

application of reasoning processes. They attempted to form a conjecture (line 139) and 

were aware of the need to form a convincing argument (line 142) and this culminated in 

their statement in line 212. However, the combination of not pursuing a line of enquiry that 

compared the Vs in Figure 4.2 and anchoring their argument (Lithner, 2008) in the flawed 

idea that a number can be both odd and even resulted in limited mathematical reasoning. 

David and Emma applied the four arithmetic operations in turn to the V arrangements 

provided to arrive at a total for each V; Photographs 4.2 and 4.3 are illustrative of this 

approach. 

 

Photograph 4.2: David's exploration of finding the totals for each V 

 

Photograph 4.3: Emma's exploration of using the products of each row to calculate the total for each V 

This had potential to facilitate comparison between the Vs; however, the pair did not then 

use the data that they generated to compare the Vs or to pursue a line of enquiry by 

conjecturing about why one might be magic. Instead, they added the totals that they had 

established for all eight Vs on their page and arrived at what they termed a magic number 

of 101 (Photograph 4.4); there appeared to be no rationale for this approach, nor any 

discussion about what the total of 101 might mean. There is very little evidence in this 

lesson that David and Emma engaged in mathematical reasoning processes to pursue a 

line of enquiry. 
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Photograph 4.4: Emma's work to find a total for eight Vs 

In School 3 the class established in the first five minutes of the lesson that arrangement 

(a) in Figure 4.2 was the magic V of the pair, because each arm of the V summed to the 

same total. T3 asked the class to use the numbers 1–5 and explore whether other 

arrangements could be found that were magic. 

Michelle appeared to understand that one of the criteria for the activity was that only the 

digits 1–5 could be used: 

10	
  	
   Grace	
   Shall	
  we	
  do	
  1	
  to	
  10?	
  
11	
   Michelle	
   But	
  we	
  have	
  to	
  do	
  1	
  to	
  5	
  

Excerpt 4.3: BL observation transcript 

However, the two trials that she generated with Grace and believed to be successful, used 

the digits 1 to 6, first omitting 4 and then omitting 2 (Photograph 4.5). Using this approach, 

the pair was able to focus on achieving the same totals on each arm of the V. 
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Photograph 4.5: Michelle and Grace's trials 

When T3 challenged the class to find all the solutions using the numbers 1–5, the pair 

continued to use strategy of first deciding the total for the arms of the V, then establishing 

the numbers to achieve this to create a Magic V. Excerpt 4.4 and Photograph 4.6 illustrate 

for different examples how they randomly decided on the total for each arm and selected 

numbers to create the chosen total. 

141	
   Michelle	
   Let’s	
  try	
  and	
  make	
  [each	
  arm]	
  10	
  

Excerpt 4.4: BL observation transcript 

 

Photograph 4.6: Grace's V with arms totalling 20 

Michelle and Grace seemed able to use random specialisation (Mason et al., 2010) to 

create trials in this activity. However, whilst they adhered to the criterion that each arm of 

the V had to have the same total, they ignored the criterion that they needed to use the 

numbers 1–5 only. This restricted their pursuit of a reasoned line of enquiry; their trials did 

not result in the emergence of patterns and consequently, without the opportunity to 

notice patterns, they were not able to form conjectures or generalisations. 

Michelle, Grace, Alice, Ruby, David and Emma used a random specialisation approach 

yet this did not result in the creation of successful trials. None of these six children 

established any patterns or relationships, formed conjectures, generalised or formed 

convincing arguments. 

The remaining two children, Mary and Marcus, created a number of trials, many of which 

successfully met the criteria to be magic Vs (Photograph 4.7). 
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Photograph 4.7: Marcus (left) and Mary 's (right) initial trials at creating magic Vs 

Marcus formed a conjecture based on his trials in Photograph 4.7: 

81	
  	
   Marcus	
   I	
  think	
  that's	
  all	
  the	
  ones	
  you	
  can	
  do	
  

Excerpt 4.5: BL observation transcript 

However, there was no evidence that Marcus went on to test this conjecture, nor that he 

formed an argument as to why this might be the case. Marcus had orally noted when he 

found new solutions, however, neither he nor Mary annotated which Vs were magic. This 

seems to have restricted his capacity to seek patterns, form conjectures and generalise 

about how to create new magic Vs and create convincing arguments about how to 

position the numbers. When T3 engaged the pair in discussion, she noted their lack of 

annotation concerning which Vs were magic (Excerpt 4.6). 

154	
   T3	
   Why	
  don't	
  you	
  go	
  through	
  and	
  tick	
  the	
  ones	
  that	
  work?	
  
155	
   T3	
   Mary,	
  do	
  all	
  of	
  those	
  ones	
  you've	
  got	
  on	
  your	
  page	
  work?	
  
156	
   Mary	
   Em,	
  I	
  think	
  so	
  
157	
   T3	
   Would	
  it	
  help	
  if	
  you	
  wrote	
  the	
  totals	
  on	
  them?	
  

Excerpt 4.6: BL observation transcript 

Following this dialogue with T3, the pair annotated their trials to identify those that formed 

magic Vs and their totals (Photograph 4.8). This provided the opportunity to notice 

patterns, such as the solutions that formed magic Vs each had an odd number at the 

base. Whist neither child articulated this pattern, they did appear to have noticed it; when 

the activity was extended to Vs comprising 9 numbers, Marcus and Mary each created an 

initial solution with an odd number at the base. Hence in this activity, Marcus and Mary 

used random specialisation to create trials and noticed patterns. In addition, Marcus 

formed a conjecture. However, neither child made generalisations about how to position 

numbers to form magic Vs or why this might work. 
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Photograph 4.8: Marcus (left) and Mary's (right) annotated Vs 

Figure 4.3 summarises the pathway of reasoning processes predominantly used by the 

study group in the BL. It illustrates the study group’s limited perseverance in mathematical 

reasoning through their limited movement between reasoning processes; indeed six of the 

group used just one reasoning process. This provides baseline data with which to 

compare the outcomes of the research lessons in which interventions were applied to 

improve the children’s perseverance in mathematical reasoning. 

 

Figure 4.3: Pathway showing reasoning processes predominantly used by study group in BL 

4.2 Research lessons 1 and 2: the first intervention 

The activities used for RL1 and RL2 were Addition Pyramids and Paths around a Square 

Pond (Table 3.1 and Appendix 3.1). In these two lessons, the initial intervention, detailed 

in Section 3.2.4, was applied, and provided the children with opportunities to use 

mathematical representations in a provisional way. In RL1, the children were provided 

with number cards and Numicon, in RL2 the children were provided with Cuisenaire rods. 

These interventions enabled the children to adopt reasoning processes that were not 

observed in the BL and this resulted in improvements in the study group’s perseverance 

in mathematical reasoning; the children were able to progress in their use of reasoning 

processes from random specialisation to systematic specialisation, pattern spotting and 

conjecturing. 

Specialise 
randomly 

Spot pattern 
(Marcus & 

Michelle only) 
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4.2.1 The study group’s reasoning processes and their perseverance in 
mathematical reasoning in RL1 and RL2 

As with the BL, the study group continued their use of random specialisation at the start of 

both activities; when asked by their teacher how they had decided on the order for the 

base numbers in the pyramid activity, Michelle and Alice gave the responses in Excerpt 

4.7: 

94	
   Michelle	
  	
   We	
  shuffled	
  them	
  randomly	
  
162	
   Alice	
   I	
  picked	
  them	
  up	
  and	
  went	
  boom	
  [depositing	
  the	
  Numicon	
  on	
  table]	
  and	
  then	
  
	
   	
   we	
  sorted	
  them	
  out	
  

Excerpt 4.7: RL1 observation transcript 

Unlike in the BL, this approach appeared to be used to “get a feel” (Mason et al., 2010, 

p.15) for the problem. In School 2, T2 modelled to the class how the numbers 1, 3, 4 and 

5 could be positioned in any of the four cells at the base of the addition pyramid and he 

showed how two adjacent base numbers summed to create the number in the cell above. 

Photographs 4.9 and 4.10 capture the study group’s first trials at creating an addition 

pyramid. Despite T2’s modelling, the group appeared to need time to explore the activity 

to understand how to apply the criteria to create addition pyramids. Alice and Ruby initially 

appeared to use the blank cards to create subtraction calculations whilst Emma explained 

to David that her arrangement of Numicon in Photograph 4.10 is valid because she has 

created a series of adjoining shapes 3, 4, 5, 6, 7 so that adjacent shapes increase by 1. 

 

Photograph 4.9: Alice and Ruby's first trial at creating an addition pyramid 
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Photograph 4.10: Emma and David's first trial at creating an addition pyramid 

A similar picture emerged in RL2. T3 also shared with the class how to begin the activity, 

by modelling how to construct a 12 pond from Cuisenaire rods. Marcus and Mary’s first 

trials at creating their own examples from Cuisenaire rods illustrate their initial difficulties 

(Photographs 4.11 and 4.12). Marcus found it difficult to construct a square pond, the 

example on the left of Photograph 4.11 is 2cm×3cm, and Mary had difficulty in laying out 

four rods of the same length to create a square perimeter. 

 

Photograph 4.11: Marcus's first trials at creating representations of square ponds surrounded by paths 

 

Photograph 4.12: Mary's first trials at creating square ponds surrounded by paths 
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This exploratory phase of the lesson, in which the children got a feel for the activity and its 

parameters, was short and the children’s explorations and random trials developed into 

trials in which the activities’ parameters had been understood and applied. Photographs 

4.13 and 4.14 illustrate some of the study group’s first successful trials using a random 

specialisation approach (Mason et al., 2010). 

 

Photograph 4.13: Alice and Ruby's initial successful trial 

 

Photograph 4.14: Grace's initial successful trial 

In both activities, the children’s use of random specialisation provided data that they then 

used to spot patterns and relationships. In the pyramids activity, the study group realised 

that there was a relationship between the order of base numbers and the top number in 

the pyramid and this refocused their actions on establishing the highest and lowest 

possible pyramid totals. However, having realised this relationship, none of the group 

used a systematic approach to explore the impact that order of the base numbers had on 

the top pyramid number. Without considering the order of the base numbers, all four 

children in School 2 focused on trying to make a larger total for the pyramid than anyone 
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else in the class (Excerpts 4.8, 4.9); in School 3 they focused on trying to create different 

solutions (Excerpt 4.10): 

170	
   Ruby	
   29,	
  that’s	
  smaller	
  than	
  34	
  

Excerpt 4.8: RL1 observation transcript 

233	
   Emma	
   We	
  were	
  trying	
  to	
  get	
  it	
  to	
  34	
  [laughs]	
  cos	
  everyone	
  else	
  was	
  doing	
  33	
  

Excerpt 4.9: RL1 post-lesson interview transcript 

138	
   Michelle	
   Have	
  we	
  done	
  this	
  order	
  before?	
  
111	
   Mary	
   Look	
  at	
  all	
  the	
  ones	
  we’ve	
  already	
  done	
  to	
  see	
  if	
  we’ve	
  done	
  a	
  double	
  

Excerpt 4.10: RL1 observation transcript 

T3 asked the group to explain why the arrangement of the base numbers in the pyramid 

on the left of Photograph 4.15 creates the lowest possible total in the top number. Only 

Marcus was able to formulate a response (Excerpt 4.11). Through creating the Numicon 

representation of the pyramids with the largest and smallest totals, Marcus appears to 

have developed an understanding of how the base numbers aggregate in each row of the 

pyramid to produce the top number. He uses this knowledge to form a generalisation 

about the composition of the top number in terms of the base numbers (lines 326 and 

328) and to construct a convincing argument about why the arrangement of the base 

numbers impacts on the top number. However, line 328 suggests that he has not entirely 

convinced himself why the base numbers in the outside positions only contribute once to 

the top number.

 

Photograph 4.15: Marcus, Mary, Michelle and Grace’s organisation of base numbers to create the smallest 
(left) and largest (right) totals at the top of the pyramids 
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284	
   Marcus	
   There’s	
  less	
  bigger	
  numbers	
  in	
  that	
  one	
  [pointing	
  to	
  the	
  pyramid	
  with	
  the	
  
	
   	
   smallest	
  total]	
  
288	
   Marcus	
  	
   There’s	
  four	
  5s	
  in	
  this	
  one	
  [pointing	
  to	
  the	
  pyramid	
  with	
  the	
  smallest	
  total]	
  and	
  
	
   	
   there	
  is	
  nine	
  5s	
  in	
  this	
  one	
  [pointing	
  to	
  the	
  pyramid	
  with	
  the	
  largest	
  total]	
  
290	
  	
  T3	
  	
   Why	
  are	
  there	
  more	
  4s	
  and	
  5s	
  in	
  this	
  one	
  than	
  in	
  that	
  one?	
  
322	
  	
  Michelle	
  	
   On	
  this	
  one	
  [pointing	
  to	
  the	
  pyramid	
  with	
  the	
  smallest	
  total]	
  we	
  put	
  1s	
  and	
  3s	
  
	
   	
   in	
  he	
  middle	
  and	
  on	
  this	
  one	
  [pointing	
  to	
  the	
  pyramid	
  with	
  the	
  largest	
  total]	
  	
  
	
   	
   we	
  put	
  4s	
  and	
  5s	
  in	
  the	
  middle.	
  
324	
   T3	
  	
   So	
  how	
  does	
  that	
  work?	
  
326	
   Marcus	
  	
   So	
  the	
  middle	
  2	
  [pointing	
  to	
  the	
  numbers	
  in	
  the	
  middle	
  of	
  the	
  base	
  row]	
  are	
  	
  
	
   	
   always	
  times	
  3	
  when	
  they	
  end	
  up	
  here	
  [pointing	
  to	
  the	
  top]	
  
328	
   Marcus	
   The	
  other	
  2	
  are	
  times	
  1	
  for	
  some	
  reason	
  

Excerpt 4.11: RL1 observation transcript 

Whilst all eight children explored the pyramids activity with Numicon in a similar way to 

Marcus, David was the only other child to generalise about the position of the base 

numbers. His advice to Emma, in Excerpt 4.12, about how to arrange the base numbers 

to create the largest total is indicative of his generalisation: 

401	
  	
  David	
   [to	
  Emma]	
  Put	
  the	
  bigger	
  numbers	
  in	
  the	
  middle	
  

Excerpt 4.12: RL1 observation transcript 

In the ponds activity, six of the eight children applied the structural patterns (Mason et al., 

2009; Mulligan and Mitchelmore, 2009; 2012) that they had noticed to develop systematic 

specialisation (Mason et al., 2010). This involved a systematic approach to the order in 

which the trials were created and arranged on the table and a systematic approach to the 

construction of trials; in Photographs 4.16, 4.17 and 4.18, each pond is represented by n 

number of Cuisenaire rods of length n, and the path by 4 Cuisenaire rods of length n+1. 

Grace’s trials (Photograph 4.19), whilst systematically ordered, are not systematically 

constructed for every trial. 
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Photograph 4.16: Alice and Ruby's systematic creation and ordering of trials 

 

Photograph 4.17: David and Emma's systematic creation and ordering of trials 

 

Photograph 4.18: Michelle's systematic creation and ordering of trials 

 

Photograph 4.19: Grace's systematic ordering of trials 
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As in the pyramids activity in which awareness of the structure of how the base numbers 

combined seemed to support Marcus and David to generalise, the children’s awareness of 

the structure of the construction of the paths and ponds had the potential to prepare the 

ground for generalising. 

T2 and T3 developed the pond activity during the lesson so that when the children had 

constructed trials physically using Cuisenaire rods, they were asked to represent the data 

in a table and to look for numerical patterns. During RL2, none of the study group children 

engaged with this development in the task, even though Ruby, Alice and Michelle had 

constructed all possible examples of ponds from the Cuisenaire rods with more than 20 

minutes of the lesson time remaining. 

4.2.2 The impact of the intervention 

In these two research lessons, T2, T3 and I utilised the notion of provisionality from 

computing education (discussed in Sections 2.5.5 and 3.2.4) to design an intervention 

intended to enable children to create and interact with representations of their 

mathematical thinking in a provisional way. By facilitating the children to work 

provisionally, we hoped to create conditions for a conjectural approach to mathematical 

activity in which making trials and using the resulting data to make improvements was 

central. 

As Section 4.2.1 has shown, in RL1 and RL2 the study children created trials and made 

provisional use of representations. The children’s provisional use of Numicon and 

Cuisenaire rods facilitated an exploratory, even playful approach in which they explored 

the parameters of the activity and how to represent their thinking. This led to the swift 

creation and modification of trials, which supported the children to spot patterns 

concurrently and iteratively and specialise systematically to extend patterns. The way in 

which the children used Numicon and Cuisenaire could also be construed as working 

within Bruner’s (1966) enactive mode of representation, as the underpinning mathematical 

concepts were physically represented. In the pyramids task, the children used Numicon to 

represent the concepts of addition through aggregation (Haylock and Manning, 2014) and 

the cardinality (Montague-Smith and Price, 2012) of the numbers 1, 3, 4 and 5. In the 

ponds task, the children’s use of Cuisenaire rods represented the concept of a square as 

both area and perimeter. The children’s use of enactive representations of the 

mathematical concepts relevant to each activity enabled them to begin to construct 

understanding of the mathematical structures that underpinned the visible patterns. The 

revelation of mathematical structures through enactive representation created 

opportunities for the children to anchor (Lithner, 2008) their reasoning in relevant 
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mathematical properties, as Marcus began to in Excerpt 4.11, line 326. The combination 

of the enactive and provisional dimensions of the representations was thus significant in 

facilitating exploration, making systematic trials, creating and noticing patterns, and 

importantly, for the mathematical structures underpinning the patterns to be evident to the 

children. 

The children also worked provisionally within Bruner’s (1966) symbolic mode when they 

used symbols to represent numbers in the pyramids activity. The use of number cards 

meant that they could explore arrangements of base numbers in the pyramid in a 

provisional way (for example, Photograph 4.13). Whilst the provisional use of symbolic 

representations did not support the children’s structural understanding of the emerging 

patterns, it did support all eight children to work within the criteria of the activities. In the 

pyramids activity, the children initially used cards with the numbers 1, 3, 4 and 5 to create 

the base numbers for the pyramid and this helped them to apply the criteria that there 

were four base numbers and these could only be 1, 3, 4 and 5 but could be arranged in 

any order. Working within the criteria of each activity provided a greater opportunity to 

create meaningful trials that could form a basis for pattern spotting rather than misapply 

the criteria, as Michelle and Grace did in the BL. 

In the BL, it was notable that whilst the children were able to use random specialisation 

(Mason et al., 2010) to generate trials only two of the children were able to create 

successful trials and this limited the opportunities for mathematical reasoning. In RL1 and 

RL2, the study group again began to create trials using random specialisation; however, 

one immediate impact of the children working provisionally with representations was that 

their pace of creating trials and the number of trials created was greater than in the BL. 

Their creation of many random trials in a short space of time facilitated the generation of 

successful trials, which laid the foundations for pattern spotting. In RL1, this enabled two 

of the children to spot the relationship between the order of the base numbers and the 

magnitude of top number in the pyramid and in RL2, it facilitated seven of the children to 

progress from random specialisation to systematic specialisation. The pace of making 

trials also seemed to support the concurrent creation and adjustment of trials and a rapid 

application of a trial and improvement approach, exemplified in Excerpt 4.13. 

RL1	
  
28	
   	
  Alice	
   If	
  we	
  add	
  the	
  bottom	
  two	
  numbers	
  together,	
  that	
  will	
  make	
  7,	
  and	
  then	
  we	
  	
  
	
   	
   have	
  to	
  try	
  and	
  have	
  10	
  on	
  top.	
  
RL2	
  
45	
  	
   Alice	
   No,	
  that's	
  not	
  going	
  to	
  work,	
  we're	
  going	
  to	
  have	
  to	
  go	
  for	
  something	
  smaller	
  
116	
   Emma	
   It's	
  not	
  working.	
  The	
  only	
  way	
  that	
  this	
  is	
  going	
  to	
  fit	
  is	
  if	
  it's	
  like	
  that	
  

Excerpt 4.13: RL1 and RL2 observation transcript 
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Whilst there was scant evidence of the children verbalising conjectures, their non-verbal 

conjecturing could be inferred through the ways in which they created trials; Photograph 

4.20 illustrates how Michelle selected the yellow, 5cm rods to represent the 5th pond and 

this could suggest that she had formed a conjecture about either the emerging colour 

patterns or the rod lengths. Potential conjectures, such as Michelle’s, were numerous and 

it was likely that I was not aware of many that took place. However, I did pursue this 

example with Michelle in the post lesson interview and Excerpt 4.14 seems to suggest 

that she had formed a conjecture about the emerging colour pattern. 

 

Photograph 4.20: Michelle's part creation of the 5th pond 

21	
   Michelle	
   On	
  the	
  pond	
  before,	
  the	
  purple	
  was	
  the	
  path,	
  on	
  the	
  one	
  before	
  that	
  green	
  	
  
	
   	
   was	
  the	
  path,	
  that	
  is	
  now	
  the	
  pond.	
  So	
  if	
  we	
  put	
  the	
  purple	
  in	
  the	
  pond,	
  then	
  	
  
	
   	
   that	
  one	
  (yellow	
  for	
  the	
  path)	
  is	
  one	
  bigger.	
  

Excerpt 4.14: Post-RL2 interview transcript 

In Section 2.4.2, I noted that successful perseverance in mathematical reasoning results 

in movement between reasoning processes so that creating trials leads to pattern 

spotting, conjecturing, generalising and the formation of convincing arguments. 

In RL1 and RL2, it seems that the children’s provisional use of representations to make 

trials impacted on their movement between reasoning processes. Whilst in the BL, the 

main process that characterised the study group’s approach was random specialisation, in 

RL1 and RL2 their provisional use of representation seemed to enable a more productive 

use of random specialisation; in these lessons their random trials led to systematic 

specialisation, pattern spotting and some conjecturing. Figure 4.4 represents the pathway 

of reasoning processes predominantly used by the study group in RL1 and RL2 and 

shows the improvement in their perseverance in mathematical reasoning compared to the 

BL (Figure 4.3). The pathway represented in Figure 4.4 is consistent with Mason et al.’s 

(2010) assertion that random specialisation is a valuable process to get a feel for the 

problem but that systematic specialisation is needed to facilitate the emergence of 

patterns and formation of conjectures. 
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Figure 4.4: Pathway showing reasoning processes predominantly used by study group in RL1 and RL2 

In Section 2.1.1 I argued that mathematical reasoning is the pursuit of a line of enquiry to 

produce assertions and develop an argument to reach and justify conclusions. This 

involves the processes of generalising (Mason et al., 2010) and forming convincing 

arguments about why the generalisation is true (Lithner, 2008; Mason et al., 1982; 

Stylianides and Stylianides, 2006). Whilst Figure 4.4 represents an improvement in the 

study group’s perseverance in mathematical reasoning compared to the BL, there was 

little evidence that the children formed generalisations or convincing arguments about why 

patterns and relationships were present. Whilst some of the children seemed to develop 

understanding of the mathematical structures (Mason et al., 2009; Mulligan and 

Mitchelmore, 2009; 2012) that underpinned each activity and this led to some systematic 

specialisation and pattern spotting, I was curious about why this had not led to more of the 

group making generalisations. Hence in the post-lesson interviews, I asked questions to 

ascertain their capacity to generalise about what they had found out during the lesson. 

The following examples illustrate the responses and evidence that, despite the children’s 

lack of generalising during RL1 and RL2, they were able to form generalisations with 

limited additional scaffolding from me. 

Example	
  1:	
  Post-­‐RL1	
  interview	
  with	
  Alice	
  and	
  Ruby	
  

Following RL1, I asked Alice and Ruby how to make the pyramid with the largest total. 

Their responses in Excerpt 4.15 indicate that they had not formed a generalisation about 

how to do this, and line 48 suggests that they were applying a random specialisation 

approach throughout the lesson: 

48	
  	
   Ruby	
   We	
  kept	
  on	
  mixing	
  the	
  numbers	
  round	
  and	
  trying,	
  so	
  we	
  kept	
  on	
  adding	
  them	
  
	
   	
   up,	
  and	
  then	
  it	
  came	
  up	
  with	
  31	
  
49	
   Researcher	
   How	
  were	
  they	
  arranged	
  at	
  the	
  bottom	
  to	
  get	
  31	
  at	
  the	
  top?	
  
50	
   Alice	
   I	
  can't	
  remember	
  now,	
  I	
  think	
  it	
  was	
  
51	
   Ruby	
   3	
  5	
  4	
  1	
  

Excerpt 4.15: Post-RL1 interview transcript 

I then asked the pair to re-create the pyramid with the largest total using the Numicon 

pieces, 1, 3, 4 and 5 which they completed this with ease (Photograph 4.21). 

Specialise 
randomly 

Specialise 
systematically 

Spot 
pattern 

Form 
conjecture 
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Photograph 4.21: Alice and Ruby's construction of a pyramid to create the largest top number 

Finally, I asked them to imagine and explain what might happen to the top number in the 

pyramid if the base numbers were replaced with 2, 7, 9 and 6 (visible at the bottom of 

Photograph 4.21) and then to generalise for any four numbers (Excerpt 4.16): 

117	
  	
  Alice	
  	
   It	
  [the	
  top	
  number]	
  would	
  be	
  three	
  7s,	
  three	
  9s,	
  one	
  2	
  and	
  one	
  6	
  
187	
   Researcher	
   I've	
  got	
  4	
  numbers	
  in	
  my	
  head,	
  but	
  I'm	
  not	
  going	
  to	
  tell	
  you	
  what	
  they	
  are,	
  they	
  
	
   	
   are	
  4	
  different	
  numbers.	
  How	
  would	
  you	
  tell	
  me	
  to	
  organise	
  them	
  at	
  the	
  	
  
	
   	
   bottom	
  to	
  make	
  the	
  biggest	
  total	
  at	
  the	
  top?	
  
188	
  	
  Alice	
   The	
  2	
  biggest	
  numbers	
  are	
  going	
  to	
  go	
  in	
  the	
  middle.	
  And	
  the	
  2	
  smaller	
  	
  
	
   	
   numbers	
  are	
  going	
  to	
  go	
  on	
  the	
  end.	
  
193	
   Alice	
   [and	
  for	
  the	
  smallest	
  top	
  number]	
  it	
  would	
  be	
  the	
  smaller	
  numbers	
  in	
  the	
  	
  
	
   	
   middle	
  and	
  the	
  bigger	
  numbers	
  on	
  the	
  end.	
  
197	
   Researcher	
   Why	
  does	
  that	
  work?	
  
198	
   Alice	
  	
   Because	
  the	
  bigger	
  numbers,	
  you	
  would	
  have	
  less	
  of.	
  

Excerpt 4.16: Post-RL1 interview transcript 

In this short exchange, Alice was quick to generalise about how to arrange specific and 

unknown numbers on the base of the pyramid to make the largest and smallest number at 

the top. She began to form an argument about why the generalisation for making the 

smallest pyramid worked; however, this was not yet anchored (Lithner, 2008) in the 

relevant mathematical properties of the pyramid. 

Example	
  2:	
  Post-­‐RL2	
  interview	
  with	
  Marcus	
  

At the end of RL2, Marcus had constructed ponds 1 to 5 and pond 8 (Photograph 4.22) 

from Cuisenaire rods. The examples were arranged in size order, with the additional 
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example of the 3rd pond set to one side. In addition, with the exception of pond 5 and the 

additional pond 3, all were constructed systematically; each pond was represented by n 

number of Cuisenaire rods of length n, and each path by 4 Cuisenaire rods of length n+1. 

 

Photograph 4.22: Marcus's pond constructions at the end of RL2 

Marcus had spent much of the lesson time exploring how to construct representations of 

square ponds surrounded by paths from Cuisenaire rods and Photograph 4.23 captures 

his progress 35 minutes into the lesson; it seems that the systematic approach to 

constructing square areas surrounded by square perimeters caused some difficulty for 

Marcus. 

 

Photograph 4.23: Marcus's pond constructions after 35 minutes 

In the post-lesson interview, I provided the first three Cuisenaire constructed ponds in the 

sequence and invited Marcus to construct ponds 4 and 5. As he was making pond 5, I 

asked him how he selected the rod for the path. His response (Excerpt 4.17, line 175) 

illustrates that he has noticed a relationship in the growth of the path length from one 

pond to the next. In Line 226, Marcus extended this thinking to ponds he had not 

constructed; he determined and applied a rule to generate the dependent variables, pond 

area and pond path length, from the independent variable, the pond number in the 
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sequence. Here, Marcus applied a structural generalisation (Mason et al., 2010); it seems 

that the construction he had engaged with during the lesson had enabled him to 

understand the structure of the early terms in the sequence, and he was able to apply this 

understanding to generalise about the 150th pond. 

175	
  	
  Marcus	
   You	
  know	
  that's	
  what	
  you	
  used	
  last	
  time	
  for	
  the	
  path,	
  that	
  is	
  5	
  blocks	
  
	
   	
   long,	
  so	
  you	
  need	
  one	
  that	
  is	
  6	
  blocks	
  long	
  which	
  would	
  be	
  this	
  one.	
  
225	
  	
  Researcher	
   I'm	
  thinking	
  about	
  the	
  150th	
  pond,	
  how	
  long	
  are	
  the	
  rods	
  I	
  need	
  to	
  build	
  it	
  and	
  
	
   	
   how	
  many	
  do	
  I	
  need?	
  
226	
  	
  Marcus	
  	
   To	
  build	
  the	
  path,	
  you	
  need	
  151cm	
  long	
  sticks	
  and	
  you	
  need	
  4	
  of	
  them,	
  and	
  for	
  
	
   	
   the	
  pond	
  you	
  need	
  150	
  of	
  them	
  and	
  they	
  will	
  be	
  150	
  long.	
  

Excerpt 4.17: Post-RL2 interview transcript 

4.2.3 Critiquing the initial conjecture and augmenting the intervention 

These two examples of Alice and Marcus’s capacity to generalise in the short interviews 

following RL1 and RL2 illustrate that the children in the study group had constructed 

sufficient understanding during the lessons, through specialising, spotting patterns and 

relationships and understanding the underlying mathematical structures, to be able to 

generalise; they had utilised specialisation and pattern spotting to “prepare the ground for 

generalizing” (Mason et al., 2010, p.15). However, despite their apparent preparation and 

readiness for this, forming a generalisation with a convincing argument that explained why 

it might be true were not processes that the study children engaged with in these lessons. 

This raised important questions for the teachers and me. Whilst the intervention had 

improved the children’s perseverance in mathematical reasoning by facilitating successful 

engagement in specialising, pattern spotting and to some extent, conjecturing, why were 

they not able to use this as a platform for generalising and forming convincing arguments, 

and hence pursue a line of mathematical enquiry? What could we do to enable them to 

generalise and form convincing arguments and hence improve their perseverance in 

mathematical reasoning during a mathematics lesson and how could we augment the 

intervention to achieve this? 

In the evaluation meeting following RL2, we considered three factors that may have 

limited the study group’s capacity to perseverance in mathematical reasoning: 

• the time available in one lesson to follow a reasoned line of enquiry that culminates in 

generalising and convincing 

• the study group’s lack of realisation of the need to generalise 

• the absence of a trace of information to facilitate generalising. 
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The need for additional time seemed an obvious starting point as we had all observed 

children in the study group appearing to run out of time, often at a point when they were 

apparently making progress and seemed to have the potential to move from one 

reasoning process to another. For example, in the ponds activity, as the lesson ended, 

Marcus, Mary and Grace had constructed at least six of the set of nine ponds from 

Cuisenaire rods; their trials were systematically ordered with some, but not all, 

systematically constructed. In the pyramids activity, as the lesson ended, David verbalised 

a generalisation (Excerpt 4.12). With more time, it seemed reasonable to surmise that 

Marcus, Mary and Grace might have been able to utilise the beginnings of their systematic 

specialisation for generalisation and David might have been able to construct a convincing 

argument about why his generalisation was true. Lee (2006) argues that children need 

time to construct and reflect on thinking if they are to articulate ideas and Alexander 

(2008) stresses that the pace of lessons should be in concert with the pace of cognition 

rather than organisational pace. 

However, the need for additional time could not be the sole factor in limiting children’s 

perseverance in mathematical reasoning as there were instances in RL2 when children 

appeared to have the time to generalise but, still, this did not happen. Alice and Ruby 

completed a set of systematically ordered and systematically constructed ponds with 30 

minutes of the lesson remaining, and Michelle with 12 minutes of the lesson remaining. 

Once their Cuisenaire pond constructions were completed, and in spite of the teachers 

explaining that they should now look for numerical patterns by representing the data in a 

table, Alice and Ruby constructed towers from the remaining Cuisenaire rods (Photograph 

4.24) and Michelle sat passively. Consequently, even though they had more time, none of 

the three girls progressed any further with the activity. 

 

Photograph 4.24: Alice and Ruby's Cuisenaire tower constructions 

In the post lesson interviews, I asked Alice, Ruby and Michelle why they did not use the 

time they had to tabulate their findings and seek numerical patterns. Michelle explained 
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that she did not know how to do what was asked, but Ruby and Alice believed that in 

completing the Cuisenaire constructions of the ponds, they had completed the activity: 

330	
  	
  Ruby	
  	
   I	
  thought	
  we	
  didn't	
  need	
  to	
  do	
  it	
  on	
  the	
  paper	
  because	
  we'd	
  already	
  done	
  it	
  

Excerpt 4.18: Post-RL2 interview transcript 

It seemed that whilst the teachers and I had clear ideas on how generalisation could 

feature in each activity, the need for and value of generalising was not apparent for Ruby 

and Alice. This led me to question why the provisional aspects of Papert’s (1980) Logo 

(Section 2.5.5) seem to foster a conjectural approach to mathematics in which children 

reason through a line of enquiry that leads to generalising, but this was not the case when 

the study group used non-computing resources in a provisional way. In both Logo and the 

activities in RL1 and RL2 there are opportunities for generalising. What appeared to be 

different in our intervention in RL1 and RL2 compared to Logo was evidenced in Ruby’s 

response in Excerpt 4.18; Ruby’s goal, to construct nine ponds from Cuisenaire rods, did 

not necessitate generalising (although this might still have happened), and Ruby did not 

share the same goal in this lesson as T2. In Logo, the children may similarly set their own 

goals but these commonly still create rich opportunities for generalisation (as discussed in 

Section 2.5.5). When Ruby and Alice set their own goal in the ponds activity, to create the 

suite of nine ponds from Cuisenaire, although this involved the provisional use of 

representation, it restricted the opportunities to generalise. The teachers and I needed to 

find an approach that emphasised the need to generalise and convince in a way that the 

study group were prompted to actively pursue this. We needed to seek teaching 

approaches that embedded the goal of generalising and creating a convincing argument 

more overtly into the design of the activity. With this augmentation to the intervention, we 

hoped to reduce children’s use of time spent focusing on activities with limited potential for 

reasoning. 

Both teachers chose to embed generalising and forming arguments into the activity 

design through a focus on writing; this is consistent with Johanning’s (2000) writing to 

learn approach. They planned to incorporate writing activities following the children’s 

exploration, provisional use of representations and peer discussions, seeking to minimise 

the difficulties in constructing mathematical writing reported by Hensberry and Jacobbe 

(2012) and Lee (2006). 

As the evidence suggested that the study group needed time in one lesson to make trials, 

notice patterns and relationships and understand the underpinning mathematical 

structure, it seemed that there was value in providing additional time for them to facilitate 
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generalising and developing convincing arguments. We opted to use an additional lesson 

to provide the time to develop this thinking. 

We noted one final point concerning the availability of data to facilitate pattern spotting 

and conjecturing. In the BL and RL2, the data created by the children were available 

either in the form of a written record (BL) or as a suite of physical constructions (RL2). 

However, in RL1, the pyramids that the children constructed in School 2, either from 

number cards or Numicon, were deconstructed to form subsequent trials, leaving no 

evidence of their trials. In School 3 the children had kept a written record of their 

provisional trials jotted on a sheet of paper. In School 2, the lack of such a record 

potentially inhibited the children from noticing patterns. Hence, whilst we wanted to 

continue to enable the study group to use representations in a provisional way, we saw 

value in capturing a record of trials, and noted that in instances in which the provisional 

use of representations did not themselves provide this (as in the pyramids activity), then 

the teachers would provide the children with a means to do so. We hoped to enable the 

children to keep a trace of their trials (Loveless, 2002) to support pattern spotting, 

conjecturing and generalising. 

Therefore, the teachers and I augmented the intervention for RL3 and RL4. We sought to: 

• continue to provide opportunities for children to use representations in a provisional 

way combined with the facility to capture a record of data 

• provide additional time to develop reasoning relating to one activity by allocating two 

mathematics lessons on consecutive days 

• embed an explicit focus on generalising and convincing into the activity. 

4.3 Research lessons 3 and 4: the augmented intervention 

In these two lessons the teachers applied the augmented intervention, discussed in 

Section 4.2.3. This meant that RL3 and RL4 took place on consecutive days and the 

children worked towards the same activity, Number Differences (NRICH, 2015b) in both 

lessons (Table 3.1 and Appendix 3.1). T2 and T3 applied the intervention in slightly 

different ways based on their assessment of the needs of the children in their class. Their 

applications of the intervention are detailed in Table 4.1. Both teachers sought to embed a 

focus on generalising and forming convincing arguments as to why the generalisation was 

true by incorporating writing into the activity. Grace was absent from school on the day 

that RL4 took place, hence no data were collected relating to Grace in RL4. 
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Intervention Application of intervention by 
T2 

Application of intervention by 
T3 

Provisional 
use of 
representation 
and facility to 
record data 

The children were provided with: 
• Number cards and blank cards that can be arranged in a 

provisional way 
• A sheet printed with 12 blank 3×3 grids 
• Mini-whiteboards and plain A4 paper 

Additional time RL3 and RL4 took place on consecutive days 
The children worked on the 
same activity in both lessons, 
Number Differences (NRICH, 
2015b) 

The children worked towards the 
same activity in both lessons. 
However, RL3 took place in the 
first lesson following one-week 
residential trip. T3 assessed that 
the children needed activities on 
this first day to ease their return to 
school-based work. Consequently, 
she decided to use the activity 
More Numbers in the Ring 
(NRICH, 2016) as a preparatory 
activity for Number Differences 
(NRICH, 2015b) 

An explicit 
focus on 
generalising 
and convincing 

Children’s attention focused on the use of specific sentence 
structures, eg: I think that; it might be; I think it’s got something to do 
with … because; it’s got to be because (discussed in 2.4.3). 
T2 used the book the class 
were reading, Beowulf 
(Crossley-Holland, 1982), as a 
context for generalising and 
convincing: 
• Beowulf needs to solve the 

Number Difference problem 
to be able to battle Grendel 

• Children to explore the 
activity then write a letter to 
Beowulf to explain how to 
arrange the numbers to 
solve it and why this works 

• Lessons introduced as having 
a focus: figuring out why 

• Class asked to write an 
explanation of what they found 

Table 4.1: Application of the augmented intervention by T2 and T3 

4.3.1 The children’s reasoning processes and the extent of their 
perseverance in mathematical reasoning in RL3 and RL4 

By the end of RL4, all the children in the study group were able to persevere in 

mathematical reasoning; as in RL1 and RL2, they were able to use the data they 

generated from specialising to spot patterns. However, in RL3 and RL4, they were able to 

build on this to form generalisations and convincing arguments. This marked a significant 

development in their perseverance in mathematical reasoning. 

In RL3, all of the study group successfully spotted patterns and were able to use these to 

create new solutions and to articulate a generalised solution. Five of the eight began to 
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construct an argument about why the generalisation was true, but these were only 

partially developed. The following examples illustrate these points. 

The children in School 3 first explored a preparatory activity for Number Differences 

(NRICH, 2015b) called More Numbers in the Ring (NRICH, 2016) (Table 3.1; Appendix 

3.1). T3 asked them to explore placing numbers in the rings (Photograph 4.25) so that 

adjacent differences were odd, beginning with the ring with 4 numbers. 

 

Photograph 4.25: Four blank number rings displayed on board by T3 

Marcus, Mary, Michelle and Grace began by making trials using random specialisation 

(Mason et al., 2010). However, they did not appear to look for emerging patterns. 

Michelle’s response in Excerpt 4.19, line 86 is illustrative of this group; they only began to 

focus on looking for patterns when T3 asked the class in a mini-plenary following ten 

minutes of activity what they had noticed. Michelle, Grace and Mary were then quick to 

look for patterns in their trials: 

85	
   T3	
   What	
  did	
  you	
  discover?	
  
86	
  	
   Michelle	
  	
   I	
  didn't	
  really	
  discover	
  anything,	
  I	
  just	
  tried	
  out	
  numbers.	
  I	
  found	
  2	
  [that	
  	
  
	
   	
   worked]	
  
94	
   T3	
   Tell	
  me	
  about	
  how	
  the	
  odd	
  and	
  even	
  numbers	
  are	
  arranged	
  
96	
   Michelle	
   They	
  are	
  opposite	
  each	
  other,	
  3	
  and	
  5	
  are	
  odd	
  and	
  8	
  and	
  2	
  are	
  even	
  
100	
  	
  Grace	
   Mine	
  go	
  odd	
  even	
  odd	
  even	
  
102	
  	
  Mary	
   Mine	
  goes	
  odd	
  even	
  odd	
  even	
  

Excerpt 4.19: RL3 observation transcript 

Having established the odd–even pattern to create successful solutions in the 4 number 

ring, the group moved on to the 3 number ring. Michelle worked at a fast pace, using the 

number cards to create trials (Photograph 4.26). 
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Photograph 4.26: Michelle's rapid creation of trials for More Numbers in a Ring 

T3 noted that Michelle was not recording any of her trials. Excerpt 4.20, Line 177 indicates 

that Michelle was rapidly manipulating the number cards to find a solution that worked. In 

the rest of Excerpt 4.20, it appears that Michelle and Grace are treating each number in 

isolation and as particular and unique case rather than seeking commonalities between 

groups of numbers. In the 4 number ring, they had been able to apply an odd/even 

classification of the numbers to support pattern spotting; however, they had not applied 

this approach to the 3 number ring at this stage. Consequently, in line 191, T3 prompted 

them to do this. 

177	
  	
  Michelle	
  	
   I'm	
  trying	
  to	
  find	
  ones	
  that	
  works	
  first	
  cos	
  I'm	
  doing	
  them	
  really	
  fast	
  
179	
   T3	
  	
   Tell	
  me	
  what	
  you	
  are	
  finding	
  
180	
  	
  Grace	
   Well	
  this	
  one	
  [difference]	
  is	
  3	
  but	
  whenever	
  I	
  put	
  a	
  number	
  here	
  it	
  [the	
  	
  
	
   	
   difference]	
  usually	
  equals	
  to	
  an	
  odd	
  number	
  but	
  when	
  I	
  look	
  at	
  these	
  2	
  it	
  	
  
	
   	
   equals	
  to	
  an	
  even	
  number	
  
181	
   T3	
   How	
  many	
  have	
  you	
  tried?	
  
182	
   Michelle	
   Loads	
  
185	
   T3	
   You've	
  tried	
  loads	
  and	
  it	
  doesn't	
  work.	
  Do	
  you	
  think	
  it's	
  possible	
  or	
  impossible?	
  
186	
   Michelle	
   Well,	
  it's	
  probably	
  possible	
  but	
  we	
  only	
  have	
  up	
  to	
  9	
  
188	
   Michelle	
   Somewhere	
  there's	
  probably	
  a	
  number	
  that	
  works	
  
189	
   T3	
   Can	
  you	
  think	
  about	
  the	
  kinds	
  of	
  numbers	
  you	
  are	
  looking	
  at?	
  What	
  did	
  you	
  	
  
	
   	
   notice	
  in	
  the	
  first	
  puzzle	
  about	
  the	
  opposite	
  numbers?	
  
190	
   Michelle	
  	
   They're	
  even	
  and	
  odd	
  
191	
   T3	
   Can	
  you	
  use	
  any	
  of	
  that	
  logic	
  when	
  you	
  are	
  thing	
  about	
  the	
  3	
  numbered	
  ring?	
  

Excerpt 4.20: RL3 observation transcript 

In RL4, Marcus similarly pursued a random specialisation approach even though he 

apparently understood and had generalised the relevant mathematical relationships 

(Excerpt 4.21): 
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111	
   T3	
   How	
  are	
  you	
  thinking	
  about	
  arranging	
  the	
  numbers?	
  
112	
   Marcus	
   I’m	
  not	
  thinking	
  about	
  it	
  
115	
   T3	
   What	
  could	
  you	
  be	
  thinking?	
  
116	
   Marcus	
   Never	
  have	
  an	
  odd	
  and	
  an	
  odd	
  next	
  to	
  each	
  other,	
  or	
  an	
  even	
  and	
  an	
  even	
  next	
  
	
   	
   to	
  each	
  other	
  

Excerpt 4.21: RL4 observation transcript 

Following the dialogue with T3 in RL3 (Excerpt 4.20), Michelle, Grace and Marcus 

appeared to be able to use the odd/even classification of numbers from the beginning of 

the Number Difference activity. Having created one successful trial, Michelle and Mary 

tried to begin their second trial using an odd–even pattern but beginning with an even 

number in the top left corner (Photograph 4.27). They realised that they were not able to 

use the remaining number 7 but needed an even number in the bottom right corner to 

maintain an odd difference between adjacent numbers, so they used a Numicon 2. 

However, they also rejected this solution as it did not use the numbers 1–9, and they 

reverted to beginning the 3×3 grid with an odd number in the top left corner. 

 

Photograph 4.27: Michelle and Mary's trial positioning even numbers in the corners 

T2 began RL3 with the Number Difference (NRICH, 2015b) activity and set the challenge 

to the class to arrange the numbers 1–9 in a 3×3 grid so that the difference between 

adjacent numbers was odd. Ruby, Alice, Emma and David began by using random 

specialisation to manipulate number cards; they found solutions that matched the criteria 

and they recorded these on a printed sheet (Photograph 4.28). 
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Photograph 4.28: Initial trials for Number Differences in School 2 making provisional use of number cards and 
a more permanent record of solutions 

The study group in School 2 created their first successful solutions during the first four 

minutes of activity and Ruby formed her first conjecture, which she expressed as an idea 

for specialising (Excerpt 4.22, line 94), during the first two minutes. When challenged by 

Alice, Ruby articulated a convincing argument (line 97) as to why this would work that was 

anchored (Lithner, 2008) in the odd differences between adjacent numbers. The pair 

appeared to have formed a conjecture that there needs to be an odd number in the 

middle, and their subsequent trials became increasingly systematic and they explored and 

tested this (lines 114, 124). 

94	
  	
   Ruby	
   We	
  could	
  just	
  put	
  them	
  in	
  order,	
  1,	
  2,	
  3,	
  4,	
  5…	
  
96	
   Alice	
  	
   That’s	
  not	
  going	
  to	
  work	
  
97	
   Ruby	
  	
   Yes	
  it	
  is	
  because	
  all	
  of	
  them	
  [the	
  differences]	
  are	
  1	
  
114	
  	
  Alice	
   Shall	
  we	
  try	
  9	
  in	
  the	
  middle?	
  What	
  number	
  shall	
  we	
  put	
  in	
  the	
  middle?	
  What's	
  
	
   	
   odd?	
  
124	
   Ruby	
   Put	
  all	
  the	
  odd	
  numbers	
  in	
  the	
  middle	
  

Excerpt 4.22: RL3 observation transcript 

Following this exploration time to make trials, spot patterns and form and test conjectures, 

T2 refocused the class to support their movement towards generalising and convincing: 

297	
  	
  T2	
  	
   If	
  you	
  have	
  10	
  solutions	
  and	
  a	
  pattern	
  that	
  works.	
  Then	
  your	
  job	
  is	
  to	
  explain	
  	
  
	
   	
   that	
  pattern	
  and	
  why	
  it	
  works.	
  

Excerpt 4.23: RL3 observation transcript 

David and Ruby responded to the first part this task (David’s oral response, Excerpt 4.24, 

Ruby’s written response, Photograph 4.29). Each explained how to create successful 

solutions and these explanations took the form of a generalisation. 
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330	
   David	
   The	
  odd	
  numbers	
  will	
  always	
  have	
  to	
  touch	
  the	
  even	
  numbers	
  
364	
  	
  David	
  	
   All	
  you	
  have	
  to	
  do	
  is	
  an	
  even	
  number	
  here,	
  an	
  even	
  number	
  here,	
  an	
  even	
  	
  
	
   	
   number	
  here	
  and	
  an	
  even	
  number	
  here	
  [pointing	
  to	
  mid	
  position	
  of	
  each	
  side]	
  
	
   	
   and	
  then	
  the	
  rest	
  odd	
  

Excerpt 4.24: RL3 observation transcript 

 

Photograph 4.29: Ruby's work 

Alice’s written response (Photograph 4.30) also generalised the pattern. However, she 

then began to explain why this worked by anchoring her argument (Lithner, 2008) in the 

odd difference between odd and even numbers. Initially she drew on the odd/even 

property of the sum of an odd and even number rather than the difference, but was able to 

spot and correct this. 

 

Photograph 4.30: Alice's work 

Having worked on explaining the pattern and why it worked, Alice and Ruby returned to 

creating further solutions (Excerpt 4.25, line 334). David and Emma did not engage in 

writing an explanation, but continued to create solutions, even though David began to find 

this dull (Excerpt 4.25, line 361) and had heard T2’s instruction (Excerpt 4.26) to create a 

maximum of ten solutions. 
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334	
   Alice	
   One	
  more	
  to	
  go	
  and	
  then	
  we’ve	
  got	
  23	
  
361	
   David	
  	
   Oh	
  this	
  is	
  so	
  boring	
  now,	
  can	
  we	
  do	
  something	
  else	
  

Excerpt 4.25: RL3 observation transcript 

147	
   David	
   You	
  had	
  to	
  try	
  to	
  get	
  10	
  but	
  we	
  done	
  24	
  

Excerpt 4.26: Post-RL3 interview transcript 

Both T2 and T3 asked their classes to create a written explanation of what they had found 

that also explained why it worked. T2 asked the children to do this in the form of a letter to 

Beowulf. T3 did not provide a context but particularly asked the children to include it’s got 

to be because from the selection of reasoning sentence starters displayed on the board 

(Photograph 4.31). Both teachers encouraged the children to use diagrams to support 

their explanations. 

 

Photograph 4.31: Reasoning sentence starters on the board in School 3 

Table 4.2 shows transcripts of the study group’s written explanations in RL4 (see 

Appendix 4.1 for photographs of the children’s work). The transcripts are colour coded to 

illustrate the aspects of generalising and convincing used by each child. 

In their written explanations in RL4, all seven of the study group children articulated a 

generalisation explaining how to arrange the numbers to create correct solutions. 

Marcus’s generalisation omitted the starting point and direction of working to follow the 

sequence and consequently his generalisation was incomplete. Other children overcame 

this difficulty by exemplifying the arrangement using diagrams or by describing the 

location of numbers in terms of the middle and corner positions; here they drew on the 

data to provide a warrant for their argument (Bergqvist and Lithner, 2012). 
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E
m

m
a’

s 
w

or
k 

 

In this piece of work there is a rule and that the odd numbers can only touch the 
even numbers because: even numbers+even numbers always = even numbers. 
The centre number always should be odd because there has to be 4 evens and 
5 odds but will it work with 5 evens and 4 odds? [Diagram to exemplify with 
specific numbers that even numbers cannot be positioned in the corners and 
middle with 4 evens and 5 odds]. [Diagram to illustrate how to position 5 odd and 
4 even numbers, identifying the difference between adjacent numbers]. 

R
ub

y’
s 

w
or

k 
 

I’m writing to you about how my solution does work. This does work because all 
the odd numbers go in the corners and one by one you put the odd numbers in 
the middle. 
This is write because if you do this [diagram of two adjacent even numbers] it 
will not work because the difference between and 8 and 4 is 4 and 4 is an even 
number. 

A
lic

e’
s 

w
or

k 
 

I’m writing to you to show you how to do the odd and even challenge. Okay so 
first thing you need to know is that we are only useing the numbers 1 to 9 and 
there is 5 odd numbers and 4 evens. Now the rule is that the difference between 
the numbers is odd it doesn’t matter what wich odd number you pick to go in the 
middle, so I started with 5. Now the order on the outside needs to start at the 
conner but the pattern is odd even. The reason you couldn’t have odd odd is that 
it would equal even and even even would equal even but we want it to equal 
odd. I can prove it. 8−2= [6, even] and odd−o[dd] 7−9=[odd] but odd−even 
9−6=[3]. Therefore odd−even would be r[ight]. There was something I forgot to 
tell you, you can not use the same number twice. Now remember the numbers 
can’t be repeated. So therefore, this would be a completed grid [diagram to 
illustrate how to position 5 odd and 4 even numbers]. 

D
av

id
’s

 
w

or
k  

In this challenge there is a rule. That rule says that even numbers can only touch 
odd numbers because an even number + another even number always = an 
even number. Eg 2+2=4, 4+4=8, 8+8=16, 16+16=32, 32+32=64, 64+64=128. 
[Diagram showing that the odd numbers are always positioned in the corners 
and middle and the even numbers in between]. 

M
ic

he
lle

’s
 

w
or

k  

The odds have to be in the corners and the middle because there is more odd 
numbers than even numbers. If two odds are next to each other the difference 
will be even and if two even numbers are next to each other the difference will 
be even. So there needs to be an odd and an even next to each other. 

M
ar

cu
s’

s 
w

or
k 

 

To complete the grid you need to do the sequence odd even until you complete 
the square. 
This is because if a odd is next to a odd it will equal an even number witch you 
cannot have and an even next to an even will equal an even number but using 
the sequence I said above you will always have an odd next to an even witch will 
equale an odd number. 

M
ar

y’
s 

w
or

k 
 

To complete the grid you need to start with an odd number and then an even 
number. Continue the sequence of odd, even, odd [diagram to illustrate how to 
position 5 odd and 4 even numbers]. 
When writing the end of the sequence, you will start to see a pattern. This is 
because if there are two odd numbers next to each other it will equal an even 
number. And if you put two even numbers next to each other it will equal another 
even number. And if you start with an even number it won't work because 

  

Key 
to 
colour 
code 

Text not coded Generalisation Considers why 
generalisation is true  

Argument anchored in relevant 
mathematical properties  

Argument based on data and hence 
has a warrant  

Table 4.2: Transcripts of study group's written explanations in RL4 (original spelling) 
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All the children attempted to explain that an odd number needs to be positioned adjacent 

to an even number to create an odd difference. Alice, Michelle, Mary and Marcus used the 

generalisation that the difference between an odd and even number will always be odd to 

construct a convincing argument. However, the children’s arguments were not always 

anchored in the relevant mathematical properties (Lithner, 2008); David and Emma both 

drew on generalisations of the sum rather than the difference between odd and even 

numbers, although Emma also exemplified the need for odd differences using a specific 

example. Ruby experienced some difficulty in expressing this and was not able to anchor 

her argument in the generalised differences between odd and even numbers. Instead she 

used a specific counter-example to illustrate that if two even numbers were in adjacent 

position, then their difference would be even. 

Whilst all the children endeavoured to construct an argument about why an even number 

needed to be positioned adjacent to an odd number, Emma and Michelle were the only 

two children from the study group who were able to construct an argument about why the 

odd numbers needed to be positioned in the corners and the middle. 

In constructing their arguments, there was considerable evidence of the children’s use of 

language structures, for example Michelle, Marcus and Ruby made effective use of 

because, if and so in their explanations as advocated by NRICH (2014b). 

4.3.2 Impact of the interventions 

As in RL1 and RL2, the children’s provisional use of representations seemed to enable 

them to explore and get a feel for the activity; indeed the children in the study group who 

used the number cards in a provisional way were able to generate their first solutions to 

the activity in less than four minutes. There were no instances in this activity of children 

misapplying the activity criteria; all used just the digits 1–9, they formed a 3×3 grid with 

the number cards and they calculated the differences between adjacent numbers. Their 

use of cards representing the numbers 1–9 may have supported their adherence to using 

the numbers 1–9 only and may have helped them to focus on the differences between 

adjacent numbers. 

In both schools the children were able to generate multiple solutions within fifteen 

minutes. Michelle (Excerpt 4.20, line 177) acknowledged that she was trying to work 

quickly to generate multiple successful solutions. The swift generation of successful trials 

had a dual impact. It provided the children with multiple solutions in a short space of time, 

which enabled them to notice patterns in the positioning of the numbers in successful 

solutions. This then enabled the children to shift their focus from generating trials and 

spotting patterns towards conjecturing and generalising. Their awareness of the emerging 
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patterns, in conjunction with their written record of successful solutions, facilitated the 

children to generalise. 

The provisional use of digit cards had more limited impact for Marcus and Emma. Marcus 

elected not to use the cards for much of the Number Difference activity; instead, he wrote 

solutions on a grid and used the Number Cards primarily when prompted to by T3 to 

support discussion of his solutions. From his response in Excerpt 4.27, he may have done 

this to keep track of the differences he calculated by annotating them, as seen in 

Photograph 4.32. 

121	
  	
  Marcus	
  	
   I	
  find	
  it	
  easier	
  to	
  work	
  out	
  the	
  differences	
  on	
  there	
  [the	
  sheet]	
  so	
  I'm	
  going	
  to	
  
	
   	
   do	
  it	
  on	
  this	
  

Excerpt 4.27: RL4 observation transcript 

 

Photograph 4.32: Marcus's written record of Number Difference solutions 

However, this approach slowed Marcus’s pace of thinking and seemed to restrict him from 

applying the odd–even pattern that he had previously articulated (Excerpt 4.21, line 116), 

as the first five examples on his sheet (Photograph 4.32) do not apply this pattern. In this 
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example, there was a need for Marcus to note the differences he had calculated and the 

provisional use of the number cards did not fulfil this. The creation of a more permanent, 

less provisional record also seemed to impact on Marcus’s application of the patterns he 

had already generalised and consequently, neither approach was ideally suited to support 

Marcus to reason whilst also managing the arithmetic in the activity. 

It became apparent in the interview following RL4 that Marcus was not the only child who 

was experiencing difficulties in visualising the difference. Emma explained how writing the 

explanation developed her understanding of the difference (Excerpt 4.28). In her written 

explanation (Table 4.2 and Appendix 4.1), she had identified and labelled five of the 

differences and it seems that this enabled her to understand where the differences were 

located on the grid and which numbers were used to calculate them. 

304	
  	
  Emma	
   Because	
  at	
  the	
  start	
  (before	
  writing	
  the	
  explanation)	
  I	
  didn't	
  understand	
  like	
  	
  
	
   	
   any	
  of	
  it,	
  like	
  the	
  difference,	
  but	
  now	
  I	
  do	
  

Excerpt 4.28: RL3 interview transcript 

In this activity, the number cards provided a symbolic representation (Bruner, 1966) of the 

grid and this did not represent the concept of difference. In comparison, the Numicon and 

Cuisenaire rods used in RL1 and RL2 provided an enactive representation (Bruner, 1966) 

of the concepts of addition by aggregation and the area and perimeter of a square; they 

physically represented the concept. The children used all three representations, Numicon, 

Cuisenaire rods and number cards, in a provisional way. However, there is a potential 

limitation in the use of symbolic representations in instances where children do not have a 

secure understanding of the mathematical concepts that they are reasoning about. In 

Marcus’s example, he realised his need to represent differences in RL4 and made use of 

written recording to facilitate this, albeit with some compromise to his use and application 

of pattern in reasoning. Emma did not act on her need to represent the differences and 

may not have realised that this was a difficulty for her. However, constructing a written 

explanation enabled her to develop this understanding. This seems to exemplify 

Johanning’s (2000) writing to learn approach, as it was through writing that Emma created 

a conceptual understanding of difference in the activity. The development of Emma’s 

understanding also emphasises, in line with Ball and Bass (2003a), the importance of 

reasoning in constructing mathematical understanding. 

The second aspect of the augmented intervention was the teachers’ specific focus on 

generalising and convincing. There seemed to be value in embedding a focus on these 

reasoning processes, as RL3 and RL4 were the only lessons in this study in which the 

study group generalised and began to form convincing arguments. All the children present 
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in RL4 were able to form generalisations about the patterns they had noticed and were 

able, at the very least, to begin to develop convincing arguments about why the 

generalisations were true. All were able to anchor their arguments (Lithner, 2008) in one 

of the relevant mathematical properties, that an odd and even number needed to be 

adjacent to create an odd difference, and all were able to use logical language structures 

(NRICH, 2014b) to express their reasoning. Two of the seven were able to explain their 

generalisations in terms of both relevant mathematical properties: the need for adjacent 

numbers to be an odd–even pair and that the odd numbers needed to be positioned in the 

corners and centre of the grid as there were more odd numbers than even in the range 1–

9. Hence, in RL3 and RL4, the study group were able to use specialising, pattern spotting 

and conjecturing to inform generalising and creation of convincing arguments. This 

resulted in the group being able to persevere in mathematical reasoning, and pursue a 

line of mathematical reasoning, so that they were able to create assertions and convincing 

arguments. In the final evaluation meeting, T2 reflected on the importance of the focus on 

generalising and convincing and the opportunities presented by initially writing a letter on 

a whiteboard to do this: 

T2	
   [In	
  RL3	
  and	
  RL4]	
  we	
  built	
  up	
  the	
  rigour	
  of	
  what	
  we	
  were	
  asking	
  them	
  to	
  do.	
  [In	
  using	
  the	
  
	
   whiteboard	
  to	
  draft	
  their	
  explanations]	
  they	
  had	
  a	
  second	
  bite	
  at	
  the	
  cherry,	
  do	
  it	
  once	
  on	
  
	
   the	
  whiteboard,	
  if	
  it’s	
  not	
  right	
  you	
  can	
  wipe	
  it	
  clear	
  until	
  you’re	
  happy	
  with	
  it.	
  They	
  had	
  to	
  
	
   self-­‐edit	
  regularly.	
  This	
  is	
  really	
  purposeful,	
  and	
  a	
  chance	
  to	
  really	
  get	
  the	
  explanation	
  right.	
  

Excerpt 4.29: Final evaluation meeting with T2 

Whilst the movement between reasoning processes was not linear, rather there was 

considerable to and fro movement between processes, for example specialising to pattern 

spotting and back to specialising, Figure 4.5 represents a summary pathway of the 

reasoning processes predominantly used by the study group. 

 

Figure 4.5: Pathway showing reasoning processes predominantly used by the study group in RL3 and RL4 

This movement between reasoning processes, culminating in generalising and 

convincing, represents perseverance in mathematical reasoning that far exceeds that 

observed in the BL (Figure 4.3), RL1 and RL2 (Figure 4.4). Figure 4.6 illustrates the 

development in the children’s perseverance in mathematical reasoning from the BL to RL3 

and RL4 in which all were able to persevere to the point of forming arguments about a 

generalisation. 

Form 
convincing 
argument 

Generalise Specialise 
randomly 
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systematically 

Spot 
pattern 

Form, test, 
adjust 
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Figure 4.6: Progression in the reasoning pathways from the BL to RL1–RL2 and RL3–RL4 

Whilst in the previous lessons the teachers had provided the children with activities that 

had rich opportunities for generalising and convincing, the children had not progressed to 

this, in spite of their apparent readiness to do so. At the beginning of the activity in RL3, 

the teachers set expectations about the need to explain why: 

65	
  	
   T2	
  	
   Whoever	
  can	
  identify	
  and	
  explain	
  a	
  successful	
  pattern,	
  so	
  it's	
  not	
  just	
  about	
  	
  
	
   	
   saying	
  those	
  are	
  my	
  numbers,	
  I'm	
  done	
  
31	
   T3	
   Figuring	
  out	
  why	
  is	
  the	
  big	
  focus	
  of	
  the	
  puzzle	
  we	
  will	
  be	
  doing	
  over	
  the	
  next	
  2	
  
	
   	
   days	
  

Excerpt 4.30: RL3 observation transcripts 

To realise this focus on generalising and constructing convincing arguments, the teachers 

embedded writing tasks into the activities and utilised the time afforded by the two 

consecutive lessons to facilitate this. 

By the end of RL3, all children in the study group had formed a generalisation about the 

patterns they had observed in their trials, and some had begun to form explanations about 

why these occurred. The time afforded by the second lesson enabled them to consider 

why their generalisations might be true. In their written accounts, the children used their 

data to form a warrant for their argument (Bergqvist and Lithner, 2012), they anchored 

their arguments in the relevant mathematical properties (Lithner, 2008) and used logical 

language structures to express their argument (NRICH, 2014b). 

The teachers embedded the writing aspect of the activities in different ways. T2 spent two 

lessons on the same activity and broadly divided these into time to generate trials, look for 

patterns and test them followed by writing time in which they articulated their 

generalisations and developed a convincing argument. T3 used two related activities; 

each focused the children’s attention on the same mathematical concept, difference. 

Following the second activity, the children developed a written generalisation and 
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explanatory argument as to why it was true. Francisco and Maher (2005) make a 

distinction between working on one complex task and working on a series of simple tasks; 

T2’s approach is consistent with the former and T3 adopted an approach similar to the 

latter, using a simpler related task to lead into the more complex task. Francisco and 

Maher (2005) found that complex tasks are more successful in stimulating children’s 

mathematical reasoning and creating deep mathematical knowledge than a series of 

simpler tasks. However, in my study, T2 and T3’s approaches each resulted in improved 

pursuit of a line of enquiry that involved the children in reasoning processes that resulted 

in generalising and convincing. Hence, a focus on generalising and convincing, 

irrespective of the approach, with additional time to construct the generalisation and 

argument in writing, facilitated this study group to follow a reasoned line of enquiry and to 

demonstrate perseverance in mathematical reasoning. 

The children’s provisional use of representations in the early stages of the activity was 

also significant in that it laid the foundations for the written generalisations. As in RL1 and 

RL2, the children’s provisional use of representations facilitated random specialisation 

that, during RL3, led to a more systematic approach (Mason et al., 2010), the emergence 

of patterns and the formation of conjectures. This provisional exploration additionally 

provided what Lee (2006) argues are requisites to writing about mathematical ideas; it 

facilitated the children’s thinking and talking and provided them with representations to 

think and talk about. The augmented intervention comprised three aspects: the provisional 

use of representation, a focus on generalising and convincing, and additional time to do 

this. The combination of these seemed significant in enabling children to pursue a line of 

mathematical enquiry, to produce assertions and develop an argument to reach and 

justify conclusions. 

However, the writing activity did not seem to enable David to further develop his 

reasoning. By the end of RL3, David had orally articulated a generalisation of how to 

arrange the numbers to create a successful solution (Excerpt 4.31). At the end of RL4, his 

written explanation of the generalisation (Table 4.2 and Appendix 4.1) had not significantly 

developed this as he had anchored his argument wrongly in the sum of odd and even 

numbers rather than the difference, and had not considered that the greater number of 

odd numbers in the sequence 1–9 impacted on the location of the numbers. 

330	
   David	
   The	
  odd	
  numbers	
  will	
  always	
  have	
  to	
  touch	
  the	
  even	
  numbers	
  
364	
  	
  David	
  	
   All	
  you	
  have	
  to	
  do	
  is	
  an	
  even	
  number	
  here,	
  an	
  even	
  number	
  here,	
  an	
  even	
  	
  
	
   	
   number	
  here	
  and	
  an	
  even	
  number	
  here	
  [pointing	
  to	
  mid	
  position	
  of	
  each	
  side]	
  
	
   	
   and	
  then	
  the	
  rest	
  odd	
  

Excerpt 4.31: RL3 observation transcript 
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Nevertheless, the post-RL4 interview (Excerpt 4.32) revealed that David was immediately 

able to correct his error in applying the rules of the sum rather than differences of odd and 

even numbers (line 172). Then, Emma’s statement about the location of even numbers 

(line 174) prompted David to verbalise a generalisation about locating a sequence that 

included 5 even and 4 odd numbers. This reveals David’s understanding of the impact of 

number of odd numbers on their location in both the initial sequence and David’s revised 

sequence of numbers. Whilst the focus on generalising and convincing in RL3 and RL4 

enabled David to persevere in mathematical reasoning further than in the previous 

lessons, the task to write a letter to explain how to position the numbers and why this 

worked did not enable David to fully express his understanding. Minimal prompting in the 

post-RL4 interview from both Emma and me supported David to verbalise his reasoning a 

little more. 

169	
   Researcher	
   Wow,	
  that	
  was	
  quite	
  a	
  lesson.	
  Tell	
  me	
  what	
  you	
  know.	
  
170	
   David	
   Well	
  you	
  can't	
  put	
  even	
  numbers	
  next	
  to	
  even	
  numbers	
  because	
  if	
  you	
  add	
  	
  
	
   	
   them	
  together	
  they	
  will	
  always	
  be	
  even	
  
171	
   Researcher	
   Add	
  them	
  together?	
  
172	
   David	
   Well	
  the	
  difference	
  between	
  them	
  will	
  always	
  be	
  even	
  
174	
   Emma	
   You	
  can't	
  put	
  the	
  even	
  numbers	
  on	
  the	
  outside,	
  like	
  in	
  the	
  corners,	
  because	
  it	
  
	
   	
   won't	
  work	
  
175	
   David	
   Unless	
  you	
  had	
  5	
  [evens]	
  
177	
   David	
   And	
  4	
  odds	
  
181	
   David	
   But	
  then	
  you	
  would	
  have	
  to	
  have	
  the	
  even	
  number	
  in	
  the	
  middle	
  and	
  the	
  	
  
	
   	
   corners	
  

Excerpt 4.32: Post-RL4 interview transcript 

Lee (2006) acknowledges the difficulty in constructing mathematical writing; whilst David 

had drafted his writing first on a whiteboard and discussed his thinking with Emma, the 

final written piece did not further develop his thinking. For David it did not result in the 

construction of convincing arguments, akin to Johanning’s (2000) writing to learn, that the 

teachers and I had hoped for. In the final evaluation meeting, T2 commented that it was 

common for David’s oral explanations to be stronger than his written explanations. This 

led the teachers and me to reflect on the value of oral explanations for children to both 

construct and realise the extent of their own reasoning. T3 recognised the potential for a 

focus on oral explanations for all children, but particularly those with limited perseverance 

in mathematical reasoning: 

T3	
   [The	
  study	
  group]	
  had	
  never	
  had	
  to	
  verbalise	
  their	
  thinking	
  in	
  maths	
  and	
  I	
  need	
  to	
  do	
  that	
  a	
  
lot	
  more,	
  particularly	
  with	
  those	
  kinds	
  of	
  children.	
  

Excerpt 4.33: Final evaluation meeting with T3 
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We conjectured that a more formal, summative oral record of the children’s thinking might 

have value for children as an approach to constructing convincing arguments about 

mathematical generalisations. This may enable children, like David, who make limited 

progress by writing, and more broadly for children who demonstrate limited perseverance 

in mathematical reasoning, to progress to forming convincing arguments about their 

generalisations. 

4.4 Conclusions 

This chapter has shown that the augmented intervention in RL3 and RL4 enabled children 

who had previously demonstrated a limited capacity to persevere in mathematical 

reasoning, to pursue a line of mathematical reasoning to form generalisations and 

convincing arguments. 

The combinations of the aspects of the augmented intervention (the provisional use of 

representation, a focus on generalising and convincing and additional time to do this) 

seemed significant in enabling children to pursue a line of mathematical enquiry, to 

produce assertions and develop an argument to reach and justify conclusions. The 

children’s provisional use of representation laid the foundations for generalisation in two 

ways. First, it facilitated random specialisation that led to a more systematic approach 

(Mason et al., 2010), the emergence of patterns and the formation of conjectures. Second, 

it provided a focus for mathematical thinking and talking. The focus on constructing 

generalisations and convincing arguments was realised through the teachers’ emphasis of 

the need to articulate what they had found and why it worked, the writing tasks and the 

provision of the second lesson. 

The augmented intervention and its potential to impact on children’s capacity to persevere 

in mathematical reasoning, offers a way of advancing existing practice. This might be 

formulated as the following proposition: 

If teachers provide children with representations that can be used in a provisional way and 

embed a focus on generalising and convincing into mathematics lessons with time to do 

this, children who have limited perseverance in mathematical reasoning demonstrate 

improved mathematical reasoning. They are able to pursue a line of enquiry and progress 

from making trials and spotting patterns to generalising and forming convincing arguments. 

The value of writing has been argued by Kosko (2016), Segerby (2015), Johanning 

(2000), Lee (2006) and Freitag (1997) and this study extends this; embedding writing 

tasks that focus on articulating generalisations and convincing arguments can play a role 

in improving children’s perseverance in mathematical reasoning. It supports children to 

persevere in mathematical reasoning so that they do pursue a line of mathematical 
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enquiry to the point of producing assertions and developing arguments to reach and justify 

conclusions. 

The findings raise a question that may be worthy of further research. The use of writing 

was adopted in this study as one approach to foster generalisation and the formation of 

convincing arguments. However, it did not enable all the children in the study group to 

form convincing arguments about their generalisations. This led the teachers and me to 

question whether a formal, summative audio record of the children’s thinking could be 

used as an alternative strategy to facilitate children to construct and capture convincing 

arguments about mathematical generalisations. 

In the next chapter, I build on the findings and analysis from this chapter to explore the 

interplay between the children’s cognitive and affective responses and then extend this to 

consider the role of the conative concepts, engagement and focus. 
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Chapter 5: The Interplay between Cognition, Affect and 
Conation 

In Chapter 4, I found that the augmented intervention, with its specific focus on 

embedding opportunities for generalising and convincing, enabled the study group to 

persevere in mathematical reasoning to the extent that they were able to form 

generalisations and convincing arguments. 

In this chapter, I consider the research questions: 

To what extent and how does the interplay between cognition and affect impact on 

children’s perseverance in mathematical reasoning? 

What impact, if any, does the children’s conative focus have on this interplay? 

In Section 2.3, I discussed the significant and bi-directional interplay that takes place 

between cognition and affect during engagement with mathematical activity, in particular, 

mathematical activity involving problem solving and reasoning. I also examined the 

interconnections between the cognitive and affective domains, and the conative domain 

(Section 2.4). I argued that during mathematical reasoning, the interplay between 

cognition and affect does not take place in isolation from the conative domain and in 

particular the conative concepts of engagement and focus. 

In this chapter, I focus on the interplay between the children’s cognition and their affective 

responses, and then extend this to examine the tripartite interplay between cognition, 

affect and conation. First, I present an analysis of data pertaining to the children’s 

conative (the extent of their engagement and their focus) and affective responses. 

5.1 The children’s engagement, focus and affective responses 

In this section, I first analyse the extent of the children’s engagement with the activities 

involving mathematical reasoning. Second, I analyse the foci of the children’s 

engagement during these activities. The final strand of analysis examines the children’s 

affect. 

5.1.1 Engagement in the BL 

This phase of analysis showed that the children’s levels of engagement during the BL 

correlated with their perceived experience of success. The study group children in School 

3, two of whom were able to generate additional magic Vs and two of whom (wrongly) 

believed that they had generated additional magic Vs, displayed high levels of 

engagement throughout the BL. This was characterised by continued, uninterrupted focus 

on the task and participation in whole class discussion through responses to T3’s 
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questions. For example, during a whole class discussion debating whether a new solution 

is created if the numbers within one arm of a magic V are reversed, Mary whispered a 

response to herself and all four children immediately responded with raised hands when 

the whole class were invited to vote on this. In School 2, where the study group children 

were not able to establish what made one V magic, there was still evidence of high levels 

of engagement by Alice and Ruby for much of the lesson. This comprised sustained focus 

on the activity throughout much of the lesson. However, towards the end of the lesson 

their dialogue focused on topics other than the magic Vs activity, indicating dwindling 

engagement. David and Emma’s engagement fluctuated throughout the lesson, between 

periods of being engaged with and actively focusing on the activity, and periods during 

which they sat passively, toyed with a pencil or had conversations about other topics. 

One interesting aspect of engagement that the study group children in School 2 had in 

common was their tendency to engage with their own work on the task during whole class 

discussions; they continued to try to generate ideas about why one V might be magic and 

whispered to each other. During one whole class discussion, when the reason for one V 

being magic was revealed and discussed, Alice, Ruby, Emma and David were all 

engaged in their own work on the activity and did not hear the crucial explanation; this 

impacted on their understanding of the activity for the remainder of the lesson. There 

appears to be a correlation between their lack of progress in understanding what made 

one V magic and engagement: Alice and Ruby’s reduction in engagement towards the 

end of the lesson and David and Emma’s inconsistent engagement. 

5.1.2 The foci of the children’s engagement in the BL 

In this section and in Sections 5.1.5 and 5.1.8, I examine the foci of the children’s 

attention during the periods of time when they were engaged with the mathematical 

activity. I draw on data that have already been presented in Chapter 4, and rather than re-

presenting data, I reference those data in Tables 5.1, 5.2 and 5.3. 

The data in Section 4.1 showed that the study group had four main foci in the BL. Table 

5.1 summarises these. 

Common to the four different areas of focus is that they each adopted an approach to 

creating trials through randomly specialising; illustrated in the pathway of reasoning 

processes predominantly used by the study group (Figure 4.3). 
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Table 5.1: Summary of the foci of children's engagement in the BL 

5.1.3 Affect in the BL 

In the BL, all eight children in the study group used a random specialisation approach to 

making trials and only two were able to spot a pattern in the Magic V activity. However, in 

spite of their limited perseverance in mathematical reasoning, their affective responses 

were predominantly characterised by pleasure and enjoyment. This was portrayed during 

the lesson through the children’s facial expressions (Excerpt 5.1) and excited tones 

(Excerpt 5.2) and in their responses in the post-lesson interview to the question ‘what was 

that lesson like?’ (Excerpt 5.3). Michelle and Grace grinned (Excerpt 5.1) following their 

creation of Vs with arms that summed to the same total but not using the numbers 1–5 

(Photograph 4.5); they took pleasure from believing that they had created successful 

solutions, in spite of these not leading to pattern spotting and other reasoning processes. 

Similarly, whilst none of Alice and Ruby’s ideas in Excerpt 5.2 led them to move beyond 

random specialisation, they expressed each idea with excitement. Alice drew the image in 

Photograph 5.1 at the end of the BL and in the post-BL interview explained that she had 

done this to represent her puzzlement at the beginning of the lesson and her pleasure in it 

at the end. The children’s responses in Excerpt 5.3 and Photograph 5.1 reveal a 

connection between their experiences of pleasure and finding the activity a challenge. 

This is contrary to the idealised emotional pathway described by Goldin (2000) in which 

he conjectures that pleasure is experienced having chosen and successfully applied an 

appropriate strategy. During the BL, only Marcus and Mary seemed to have spotted 

patterns and established the beginnings of a successful strategy to create solutions; 

however, Alice and Grace expressed pleasure at the challenge even though they had not 

been able to overcome this (Excerpt 5.3). 

  

Focus Children 
who applied 
focus 

Related data presented 
in Chapter 4 

Calculate the total of the Vs displayed on 
the board and determine its odd/even 
property 

Alice 
Ruby 

Photograph 4.1 
Excerpts 4.1, 4.2 

Apply the four operations to each V 
displayed on the board to calculate a 
total for each V in a range of ways 

David 
Emma 

Photographs 4.2–4.4 

Create Vs with arms that had the same 
total (overlooking the criterion to use the 
numbers 1–5)  

Michelle 
Grace 

Excerpt 4.3–4.4 
Photographs 4.5–4.6 

Finding all the solutions that work Marcus 
Mary 

Excerpts 4.5–4.6 
Photograph 4.8 



 146 

176	
  	
  T3	
  	
   Can	
  I	
  just	
  tell	
  you	
  something	
  I'm	
  noticing?	
  Both	
  of	
  you	
  	
   	
   	
  
	
   	
   have	
  got	
  massive	
  grins	
  on	
  your	
  faces	
  which	
  is	
  so	
  good,	
  why	
  is	
  that?	
  
177	
   Grace	
   [giggles]	
  
179	
   Michelle	
   We	
  like	
  it.	
  

Excerpt 5.1: BL observation transcript 

29	
  	
   Alice	
   Ah,	
  I	
  think	
  I've	
  got	
  it,	
  I	
  think	
  it's…[said	
  in	
  excited	
  tones]	
  
81	
   Ruby	
   It's	
  50,	
  and	
  then	
  add	
  9	
  and	
  6	
  [eyebrows	
  high	
  and	
  face	
  animated]	
  
96	
   Ruby	
  	
   Oh,	
  no,	
  no,	
  no,	
  wait,	
  you	
  can	
  add	
  them	
  [said	
  in	
  excited	
  tones]	
  
122	
   Alice	
  	
   [Sharp	
  intake	
  of	
  breath,	
  excited	
  gasp]	
  I	
  think	
  I	
  know	
  what	
  you	
  mean	
  by	
  magic,	
  
	
   	
   which	
  is	
  odd	
  and	
  both	
  even	
  

Excerpt 5.2: Post-BL interview transcript 

School	
  2	
  
3	
   Alice	
   It	
  was	
  quite	
  fun	
  but	
  quite	
  difficult	
  at	
  the	
  same	
  time	
  because	
  he	
  didn’t	
  really	
  tell	
  
	
   	
   us	
  what	
  we	
  were	
  doing.	
  He	
  gave	
  us	
  no	
  clues.	
  
201	
   Alice	
   At	
  the	
  end,	
  I	
  loved	
  it	
  
School	
  3	
  
2	
   Mary	
   It	
  was	
  fun	
  
3	
   Marcus	
   Yeah,	
  it	
  was	
  quite	
  fun	
  but	
  also	
  challenging	
  
173	
   Grace	
   It	
  was	
  a	
  bit	
  hard	
  but	
  it	
  was	
  still	
  fun	
  

Excerpt 5.3: Post-BL interview transcript 

 

Photograph 5.1: Alice's drawing representing her initial puzzlement followed by her pleasure in the BL 

Whilst six of the study group seemed to express positive affective experiences, there was 

a different picture for David and Emma. David used sarcasm to express his dissatisfaction 

at the lack of progress in the activity, Excerpt 5.4, line 34, and became increasingly 

frustrated as the lesson progressed (lines 170, 181, 183, 194, 199); Emma expressed her 

puzzlement (line 38) and despondency through her body language (line 149). For David 
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and Emma there is an evident negative interplay between affect and cognition; they 

perceived that they were making no progress in the activity in spite of their efforts, and this 

resulted in a negative and disabling affective response. 

34	
  	
   David	
  	
   Look	
  what	
  I	
  figured	
  out	
  [he	
  shows	
  Emma	
  a	
  blank	
  mini-­‐whiteboard]	
  
38	
   Emma	
   [An	
  expression	
  of	
  pursed	
  lips,	
  writes	
  large	
  block	
  ‘?’	
  on	
  mini-­‐whiteboard]	
  
149	
   Emma	
   [slumped	
  down	
  in	
  chair]	
  
170	
   David	
   This	
  is	
  impossible	
  
181	
   David	
   [Yawning,	
  head	
  propped	
  on	
  hand,	
  elbow	
  on	
  table]	
  
183	
   David	
   How	
  do	
  you	
  do	
  this	
  [in	
  exasperated	
  tone]	
  
194	
   David	
   I	
  don’t	
  get	
  it	
  [in	
  cross	
  tone]	
  
199	
   David	
   [To	
  T2]	
  It's	
  impossible,	
  I	
  don't	
  get	
  it,	
  can	
  you	
  give	
  us	
  a	
  clue?	
  

Excerpt 5.4: BL observation transcript 

Thus, six of the children in the study group experienced positive affect despite their lack of 

progress in the activity, whilst David and Emma experienced negative affect. 

5.1.4 Engagement in RL1 and RL2 

In RL1 and RL2, the teachers applied the initial intervention in which the children used 

representations in a provisional way. In these two lessons, the study group children 

typically demonstrated high levels of engagement and positive affective responses. Their 

engagement was characterised by immediacy in beginning the activity following the 

teacher’s input (Excerpt 5.5), focused attention during whole class discussion (Excerpt 

5.6), applying the outcomes of whole class discussion to their own trials (Excerpt 5.7) and 

sustained focus on the activity throughout the lessons. 

28	
  	
   T2	
  sets	
  the	
  challenge	
  to	
  use	
  the	
  Cuisenaire	
  rods	
  to	
  explore	
  what	
  happens,	
  as	
  the	
  pond	
  gets	
  
	
   bigger	
  
29	
  	
   Alice	
  and	
  Ruby,	
  David	
  and	
  Emma	
  all	
  immediately	
  begin	
  working	
  with	
  Cuisenaire	
  and	
  
	
   talking	
  in	
  pairs	
  

Excerpt 5.5: RL1 observation transcript 

3	
  	
   T3	
  	
   [to	
  class]	
  What	
  do	
  you	
  think	
  goes	
  here	
  [in	
  the	
  pyramid	
  above	
  the	
  5	
  and	
  1]	
  
6	
   	
   During	
  this	
  whole	
  class	
  discussion,	
  Mary,	
  Marcus,	
  Michelle	
  and	
  Grace	
  all	
  look	
  	
  
	
   	
   at	
  the	
  screen	
  
7	
   	
   Marcus	
  and	
  Mary	
  crane	
  necks	
  to	
  view	
  the	
  screen	
  closely	
  
10	
   T3	
   If	
  6	
  is	
  right,	
  what	
  could	
  go	
  above	
  3	
  and	
  4	
  
11	
   Mary	
   7	
  [whispered	
  to	
  herself]	
  

Excerpt 5.6: RL1 observation transcript 
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198	
  	
  A	
  child	
  who	
  is	
  not	
  in	
  the	
  study	
  group	
  presents	
  how	
  she	
  has	
  used	
  Numicon	
  to	
  
	
   represent	
  the	
  addition	
  in	
  the	
  pyramid,	
  using	
  only	
  the	
  pieces	
  1,	
  3,	
  4	
  and	
  5	
  
215	
  	
  Before	
  this	
  class	
  discussion	
  is	
  completed,	
  and	
  without	
  being	
  prompted	
  by	
  	
  T2,	
  Alice	
  
	
   begins	
  using	
  the	
  same	
  approach	
  to	
  create	
  a	
  pyramid	
  (Photograph	
  5.2)	
  

Excerpt 5.7: RL1 observation transcript 

 

Photograph 5.2: Alice constructing pyramid using only 1, 3, 4 and 5 Numicon pieces 

However, the study group were not entirely engaged in the activities throughout these 

lessons. There were instances of disengagement, two of which I discussed in Section 

4.2.3, that resulted from the belief that they were finished or not knowing how to continue 

(Excerpt 4.18 and Photograph 4.24). The other instances fall into two categories: creating 

an alternative activity and momentarily disengaging with the activity. In RL2, Emma began 

the activity with what appeared to be a systematic approach (Excerpt 5.8, lines 106 and 

111) by constructing the smallest and largest ponds and paths. Emma and David had 

difficulty constructing the pond within the path of side length 10cm (Photograph 5.3), then 

Emma had an idea for an alternative task (line 194). David attempted to dismiss this (lines 

196 and 198), but Emma persisted with the idea to create a pattern with the pond 

constructions that she found visually appealing (Photographs 5.4, 5.5). In the post-lesson 

interview, Emma acknowledged that her engagement with an alternative task had 

impacted on her understanding (Excerpt 5.9, line 344). However, her rationale for electing 

to create and engage with this alternative task seemed to have been rooted in a desire to 

experiment with the Cuisenaire rods in a playful way, creating shapes inspired by the 

activity (line 350). This is not unlike the unstructured but not random play described by 

Dienes (1964) as the first stage of his Dynamic Principle, in which unstructured play 

followed by structured exploration are requisite stages to developing conceptual 

understanding that can be applied, for example, to reasoning situations. Whilst in this 

lesson, T2 and I had intended that children could use the Cuisenaire rods to facilitate 

reasoning about growing patterns based on the concept of square, Emma’s playful 

experimentation may have been a requisite stage to lay foundations for her to construct, 
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abstract and reason about the concept of square. In the final evaluation meeting, T2 

reflected that Emma’s “playing around” with resources supported her exploration of 

squares. 

106	
  	
  Emma	
  	
   I’m	
  going	
  to	
  try	
  to	
  do	
  a	
  really	
  really	
  small	
  one	
  
111	
  	
  Emma	
  	
   Try	
  and	
  make	
  the	
  biggest	
  one	
  
194	
   Emma	
   We	
  should	
  put	
  all	
  of	
  these	
  [trials]	
  around	
  that	
  [around	
  their	
  attempt	
  at	
  biggest	
  
	
   	
   path	
  and	
  pond,	
  Photograph	
  5.3]	
  
196	
   David	
   We're	
  not	
  doing	
  all	
  of	
  them	
  are	
  we	
  [making	
  lots	
  of	
  12	
  examples]?	
  
197	
   Emma	
   We	
  are,	
  it	
  will	
  look	
  cool	
  
198	
   David	
   What’s	
  the	
  point	
  

Excerpt 5.8: RL2 observation transcript 

 

Photograph 5.3: Emma's early trials 

 

Photograph 5.4: Emma's early engagement with alternative activity 

 

Photograph 5.5: Final product of Emma's alternative activity 
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342	
   Researcher	
   What	
  was	
  today’s	
  lesson	
  like?	
  
344	
   Emma	
   It	
  was	
  kind	
  of	
  confusing	
  because	
  I	
  don't	
  think	
  we	
  did	
  what	
  we	
  were	
  supposed	
  
	
   	
   to	
  
345	
   David	
   Yeah,	
  I	
  was	
  trying	
  to	
  but	
  then	
  you	
  just	
  made	
  this	
  weird	
  shape	
  thing	
  
346	
   Emma	
   It	
  looked	
  pretty	
  cool	
  
348	
   Researcher	
   Why	
  do	
  you	
  think	
  you	
  didn't	
  do	
  what	
  you	
  were	
  asked	
  to?	
  
350	
   Emma	
   I	
  was	
  trying	
  to	
  experiment	
  

Excerpt 5.9: Post-RL2 interview transcript 

The final category of instances in which the study group did not engage with the activity 

was characterised by more momentary disengagement. Excerpts 5.10 and 5.11 record 

how the study group momentarily disengaged from the teacher’s input when the 

discussion focused on difficult ideas; the notion of being systematic and the formula in an 

Excel spreadsheet. These moments of apparent disengagement, characterised by the 

study group children looking away from the screen, were short in duration. The study 

group seemed quick to re-focus their sight on the objects that the teachers were 

discussing; this re-engagement seemed to happen when the dialogue or activity returned 

to apparently easier topics. 

6	
  	
   T2	
  asks	
  class	
  for	
  the	
  meaning	
  of	
  systematic	
  
7	
   Emma	
  stops	
  looking	
  at	
  the	
  screen	
  and	
  looks	
  down	
  
229	
   T2	
  discusses	
  with	
  class	
  how	
  to	
  represent	
  the	
  Cuisenaire	
  ponds	
  and	
  paths	
  numerically	
  
230	
   Alice,	
  Ruby,	
  Emma	
  and	
  David	
  look	
  away	
  from	
  the	
  screen.	
  Alice	
  begins	
  to	
  create	
  tower	
  
	
   constructions	
  

Excerpt 5.10: RL2 observation transcript 

23	
   T3	
  uses	
  an	
  Excel	
  spreadsheet	
  of	
  the	
  pyramid	
  activity	
  to	
  introduce	
  how	
  the	
  pyramid	
  works	
  
24	
   Michelle	
  looks	
  at	
  the	
  screen	
  
27	
   During	
  this	
  introduction	
  the	
  formula	
  bar	
  in	
  the	
  spreadsheet	
  is	
  unintentionally	
  revealed	
  
	
   (Photograph	
  5.6)	
  and	
  T2	
  discusses	
  with	
  the	
  class	
  what	
  this	
  is	
  and	
  how	
  it	
  works	
  in	
  relation	
  
	
   to	
  the	
  addition	
  pyramid	
  
29	
   Michelle	
  looks	
  away	
  from	
  the	
  screen	
  
31	
   T3	
  re-­‐focuses	
  the	
  class	
  discussion	
  on	
  the	
  numbers	
  in	
  the	
  pyramid	
  
32	
   Michelle	
  returns	
  to	
  looking	
  at	
  the	
  screen	
  

Excerpt 5.11: RL1 observation transcript 
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Photograph 5.6: Excel spreadsheet of addition pyramid with formula bar revealed 

5.1.5 The foci of the children’s engagement in RL1 and RL2 

In RL1 and RL2, the children focused on slightly different areas (summarised in Table 

5.2). The common theme to the five areas of focus is that they concern creating trials 

through specialising; this is reflected in the four stage pathway of reasoning processes 

predominantly used by the study group (Figure 4.4). 

Table 5.2: Summary of the foci of children's engagement in RL1 and RL2 

5.1.6 Affect in RL1 and RL2 

During RL1 and RL2, the children’s affective response facilitated engagement with the 

activity. For example, they expressed pleasure and excitement when they spotted 

patterns (Excerpt 5.12), excitement in response to teacher questions (Excerpt 5.13), 

Lesson Focus Children who 
applied focus 

Related data 
presented in 
Chapter 4 

RL1 

Make a larger total for the pyramid than 
anyone else in the class 

Alice 
Ruby 
David 
Emma 

Excerpts: 
4.8, 4.9 

Making pyramids with different totals Michelle 
Mary 
Marcus 
Grace 

Excerpt 4.10 

RL2 

Constructing square ponds with paths 
from Cuisenaire rods and arranging 
these in order 

Grace 
Marcus 

Photograph: 
4.19, 4.22 

Creating and ordering square ponds 
with paths from Cuisenaire rods using a 
systematic construction 

Michelle 
David 
Emma 
Alice 
Ruby 

Photographs: 
4.16– 4.18 

Creating a pattern from the Cuisenaire 
constructions of square ponds with 
paths 

Emma Photograph 
5.5 
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enjoyment in the challenge (Excerpt 5.14) and also frustration and irritation when the trials 

do not work as anticipated (Excerpt 5.15). 

174	
  	
  Alice	
   They	
  go	
  up	
  in	
  steps	
  [said	
  in	
  excited	
  tones]	
  
178	
  	
  Alice	
  	
   Oh	
  my	
  god,	
  I've	
  got	
  a	
  pattern	
  [cheers	
  and	
  claps]	
  

Excerpt 5.12: RL2 observation transcript 

351	
  	
  T3	
   Why	
  did	
  this	
  pyramid	
  have	
  the	
  lowest	
  total?	
  [to	
  class]	
  
352	
  	
   	
   Marcus	
  immediately	
  put	
  his	
  hand	
  up	
  very	
  straight	
  and	
  waved	
  and	
  stretched	
  it	
  
	
   	
   upwards	
  [excited	
  response]	
  

Excerpt 5.13: RL1 observation transcript 

2	
  	
   Alice	
  	
   It	
  was	
  really	
  fun	
  because	
  it	
  was	
  really	
  challenging	
  but	
  at	
  the	
  same	
  time	
  it	
  was	
  	
  
	
   	
   fun	
  
110	
  	
  Mary	
  	
   It	
  was	
  hard	
  but	
  fun	
  
119	
  	
  Mary	
  	
   My	
  brain	
  was	
  sweating	
  

Excerpt 5.14: Post-RL1 interview transcript 

411	
   Alice	
   Oh	
  my	
  god	
  we're	
  1	
  off	
  [said	
  in	
  an	
  angry	
  tone	
  whilst	
  trying	
  to	
  create	
  an	
  	
  
	
   	
   impossible	
  total	
  of	
  32]	
  
412	
   Ruby	
   That’s	
  so	
  annoying	
  
425	
   Alice	
   Oh,	
  29	
  [sounding	
  exasperated.	
  Alice	
  making	
  further	
  trials	
  whilst	
  the	
  rest	
  of	
  the	
  
	
   	
   class	
  are	
  tidying	
  up]	
  
	
  
116	
   Emma	
   It's	
  not	
  working.	
  The	
  only	
  way	
  that	
  this	
  is	
  going	
  to	
  fit	
  is	
  if	
  it's	
  like	
  that	
  
117	
   Emma	
   Why	
  isn't	
  it	
  working?	
  Do	
  it	
  again	
  [said	
  in	
  frustrated	
  tone]	
  

Excerpt 5.15: RL1 and RL2 observation transcripts 

Moreover, the frustration and irritation expressed in Excerpt 5.15 did not seem to lead to 

despondency, as it did in the BL for David and Emma. Rather, it appeared to spur the 

children on to create further trials. For example, in Excerpt 5.15, line 425, whilst the class 

were tidying up, Alice immediately created another trial in response to her unsuccessful 

trial in line 411, and Emma’s response to her trial not working was to have another go (line 

117). The children’s affective responses in RL1 and RL2, whether overtly positive 

emotions of excitement or enjoyment, or those of frustration, seemed to be enabling and 

act as a trigger to persist and to create further trials. 

5.1.7 Engagement in RL3 and RL4 

In RL3 and RL4, the study group demonstrated consistently high levels of engagement. 

They engaged quickly with activities following and even during the teacher’s introduction 

(for example, Excerpt 5.16). They sustained focused engagement with the activities and 

created trials rapidly, as seen in the blurred movement of Alice’s hands in Photograph 5.7. 

There were numerous examples of the study group’s engagement with whole class 
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discussions in their attention to the screens, their hands up responses, their eagerness to 

contribute and their application of ideas from the class discussions to their own work. 

During these lessons there were no instances of the study group creating and spending 

time on alternative activities as they did in RL2. 

183	
  	
  Marcus	
  begins	
  writing	
  before	
  T3	
  has	
  finished	
  her	
  explanation	
  of	
  the	
  task	
  

Excerpt 5.16: RL4 observation transcript 

 

Photograph 5.7: Alice's rapid manipulation of number cards to create new trials 

5.1.8 The foci of the children’s engagement in RL3 and RL4 

In RL3 and RL4, the areas of focus for the children’s engagement ranged from creating 

multiple successful solutions by specialising, to constructing written explanations. This is 

illustrated in the pathway of reasoning processes predominantly used by the children 

(Figure 4.5). However, whilst the augmented intervention facilitated the study group to 

focus on generalising, explaining their generalisation and why it was true, there remained 

a tendency to focus on creating trials through random and systematic specialisation. For 

example, Alice and Ruby, having drafted an explanation of their pattern, returned to 

creating additional solutions, and David persisted in creating solutions even though he 

began to find it boring (Excerpt 4.25). Table 5.3 summarises the foci of the study group’s 

engagement in RL3 and RL4. 
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Lesson Focus Children who 
applied focus 

Related data 
presented in 
Chapter 4 

RL3 

Creating multiple, successful 
solutions 

Michelle 
Grace 
Emma 
David 
Alice 
Ruby 
 

Excerpts: 4.20, 
4.22, 4.25 
Photograph 4.26 

Creating one successful solution even 
though many solutions have been 
tried and all have been unsuccessful 

Michelle 
Grace 

Excerpt 4.20  

Explaining the pattern observed and 
why it works 

Alice 
Ruby 

Photographs: 
4.29, 4.30 

RL4 

Generating solutions randomly Marcus Excerpt 4.21 
Apply odd/even pattern of numbers to 
specialise 

Michelle 
Mary 
Marcus 

Photograph 4.27 
Excerpt 4.21 

Constructing a written explanation of 
the generalised solution and why it is 
true 

Alice 
Ruby 
David 
Emma 
Michelle 
Marcus 
Mary 

Table 4.2, 
Appendix 4.1 

Table 5.3: Summary of the foci of children's engagement in RL3 and RL4 

5.1.9 Affect in RL3 and RL4 

In RL3, the study group’s affective response was not dissimilar to RL1 and RL2. There 

were many expressions of pleasure in creating numerous successful solutions (for 

example, Excerpt 5.17, lines 290–293). There was apparent pleasure in anticipation of the 

challenge to come (Excerpt 5.18), excitement in forming conjectures (for example, Excerpt 

5.19) and expressions of frustration when trials were unsuccessful (Excerpt 5.20). 

290	
  	
  Alice	
   We've	
  done	
  12	
  
291	
   Ruby	
   It's	
  actually	
  been	
  quite	
  fun	
  
293	
   	
   Alice	
  laughs	
  
295	
   T2	
   It’s	
  not	
  who’s	
  got	
  the	
  most	
  
296	
   	
   Alice	
  groans	
  
297	
   T2	
   It's	
  who	
  can	
  explain	
  what	
  happens	
  and	
  why,	
  clearly.	
  So	
  if	
  you	
  have	
  10	
  solutions	
  
	
   	
   and	
  a	
  pattern	
  that	
  works,	
  then	
  your	
  job	
  is	
  to	
  explain	
  that	
  pattern	
  and	
  why	
  it	
  	
  
	
   	
   works.	
  

Excerpt 5.17: RL3 observation transcript 

119	
  	
  T3	
  	
   I	
  might	
  tease	
  you	
  with	
  the	
  main	
  event	
  [reveals	
  the	
  flip	
  chart	
  paper	
  of	
  the	
  	
  
	
  	
   Number	
  Difference	
  grid]	
  so	
  you	
  know	
  what	
  you	
  are	
  working	
  towards	
  [to	
  class]	
  

120	
   	
   Grace	
  and	
  Michelle	
  smile	
  

Excerpt 5.18: RL3 observation transcript 
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398   T2	
  introduces	
  final	
  challenge:	
  to	
  position	
  the	
  numbers	
  so	
  that	
  the	
  differences	
  
	
   	
   are	
  all	
  even	
  
401	
   Ruby	
   Oh	
  yeah,	
  you	
  can	
  just	
  put	
  an	
  even	
  number	
  in	
  the	
  middle	
  [speaking	
  very	
  fast	
  in	
  
	
   	
   excited	
  tone]	
  

Excerpt 5.19: RL3 observation transcript 

School	
  2	
  
265	
  	
   	
   Emma	
  and	
  David	
  position	
  numbers	
  based	
  on	
  their	
  odd/even	
  property	
  
266	
   	
   They	
  find	
  an	
  even	
  difference	
  in	
  their	
  arrangement	
  
267	
   Emma	
   Switch	
  them	
  round	
  
268	
   David	
   Yeah,	
  6,	
  1,	
  2,	
  no	
  2	
  and	
  6,	
  I'm	
  confused	
  [bashes	
  hands	
  on	
  table]	
  
	
  
School	
  3	
  
281	
   Marcus	
   No	
  [throws	
  pencil	
  down],	
  there's	
  2	
  evens	
  next	
  to	
  each	
  other	
  

Excerpt 5.20: RL3 observation transcript 

The children’s affective responses were apparently enabling; there were no examples of 

the despondency shown by David and Emma in the BL. There were many expressions of 

enjoyment in the creation of successful trials as in RL1 and RL2. There were also 

expressions of frustration (Excerpt 5.20). However, the study group’s affective responses 

in RL3 relate mainly to the creation of trials. This is indicative of their focus to create 

successful trials rather than to use the trials as a means to spot patterns, form conjectures 

and generalisations with arguments as to why these are true. Alice’s response in Excerpt 

5.17 exemplifies this; Alice had derived great pleasure from creating numerous successful 

solutions, but she responded with a groan to T2’s reminder that the focus was to establish 

the pattern then explain why. 

Whilst the children’s engagement in RL4 was consistent with that in RL3, their affective 

response was markedly different. In the post-RL4 interviews, all but one of the study 

group expressed pride or feeling good in relation to the activity (Excerpt 5.21). Four of the 

group (Alice, Emma, David and Michelle) related these feelings to their understanding of 

the activity. Their understanding appears to relate to their explanations of how to position 

the numbers so that the differences between adjacent numbers were odd and why this 

positioning worked; it relates to their formation of generalisations and convincing 

arguments. 
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2	
  	
   Alice	
  	
   Well	
  we	
  found	
  out	
  how	
  we	
  actually	
  understood	
  it,	
  the	
  proper	
  way,	
  we	
  didn't	
  	
  
	
   	
   actually	
  know	
  how	
  much	
  we	
  knew	
  about	
  it	
  
123	
   Alice	
   I’m	
  proud	
  
128	
  	
  Alice	
  	
   I’m	
  over	
  the	
  moon	
  with	
  joy	
  
131	
   Alice	
   [The	
  difficult	
  bits	
  were]	
  trying	
  to	
  start	
  it	
  off,	
  trying	
  to	
  get	
  all	
  those	
  little	
  bits	
  of	
  
	
   	
   information	
  and	
  putting	
  them	
  into	
  something	
  bigger	
  that	
  explains	
  more	
  
304	
  	
  Emma	
  	
   At	
  the	
  start	
  I	
  didn't	
  understand	
  like	
  any	
  of	
  it,	
  like	
  the	
  difference,	
  but	
  now	
  I	
  do	
  
306	
   Emma	
   [It	
  feels]	
  good	
  
325	
  	
  Emma	
  	
   We	
  know	
  quite	
  a	
  lot	
  about	
  it	
  now	
  than	
  we	
  did	
  at	
  the	
  beginning	
  
307	
  	
  David	
  	
   [It]	
  feels	
  good	
  to	
  like	
  know	
  how	
  to	
  do	
  it	
  and	
  not	
  be	
  clueless	
  and	
  write	
  question	
  
	
   	
   marks	
  and	
  don't	
  know	
  why	
  and	
  stuff	
  
64	
  	
   Mary	
  	
   I	
  feel	
  quite	
  proud	
  of	
  myself	
  
130	
  	
  Michelle	
  	
   I	
  feel	
  really	
  good,	
  I	
  feel	
  like	
  I	
  know	
  how	
  to	
  do	
  it	
  
132	
  	
  Michelle	
  	
   [I’m]	
  happy	
  and	
  proud	
  that	
  I	
  know	
  how	
  to	
  do	
  it	
  because	
  last	
  night	
  was	
  trying	
  	
  

	
  	
   trick	
  my	
  parents	
  into	
  doing	
  it	
  
138	
   Michelle	
   I	
  understand	
  it	
  
263	
  	
  Marcus	
  	
   [I	
  feel]	
  good	
  for	
  myself,	
  good	
  that	
  I've	
  managed	
  to	
  complete	
  this	
  work	
  

Excerpt 5.21: Post-RL4 interview transcript 

Marcus did not express his pride in terms of understanding, but in terms of task 

completion (Excerpt 5.21). As discussed in 4.3.1 and illustrated in Table 4.2, Marcus’s 

generalisation and accompanying argument had omissions; his generalisation of the 

pattern omitted to state the starting point for the odd–even pattern and his explanation did 

not include why the odd numbers rather than even numbers had to be in the corner and 

the middle. This indicates that he may not have constructed understanding to the same 

extent as others in the study group. Consequently, it is possible that Marcus’s sense of 

feeling good following this activity arose from completing an articulation of the pattern with 

an explanation rather than experiencing deep understanding. 

Ruby was the only child in the study group who did not express feelings of pride at the 

end of RL4. In the post-RL4 interview (Excerpt 5.22), Ruby expressed happiness with her 

work during RL4; this is consistent with the study group’s responses following RL1–RL3. 

As discussed in Section 4.3.1, Ruby fully articulated the pattern of the numbers but had 

some difficulty in using generalisations about differences between odd and even numbers 

in her explanation. During RL4, she expressed this difficulty through doubting the merit of 

the writing she had drafted (Excerpt 5.23). Ruby’s experience of difficulty, in conjunction 

with her full generalisation but partial explanation of the pattern, may have impacted on 

her affective response following RL4, and contributed to her being happy with but not 

proud of her work. 
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122	
   Ruby	
   I'm	
  actually	
  quite,	
  I'm	
  happy	
  actually	
  

Excerpt 5.22: Post-RL4 interview transcript 

116	
   Ruby	
   I	
  think	
  mine’s	
  all	
  wrong	
  [reviewing	
  her	
  letter]	
  

Excerpt 5.23: RL4 observation transcript 

In summary, whilst the study group’s affective response in RL3 was not dissimilar to that 

in RL1 and RL2, it was distinctly different in RL4. In this final lesson, all but one of the 

study group expressed pride or feeling good about their mathematics and four of the 

group attributed this to the mathematical understanding they had developed. The study 

group had not reported expressions of pride or feeling good in any lesson in the study 

preceding RL4. 

5.2 The interplay between cognition and affect 

In this section, I analyse the interplay between cognition and affect, an interaction that 

Hannula (2011b) argues is not well understood. I found that the initial intervention 

appeared to create affectively enabling conditions as the children took great pleasure in 

creating trials. However this apparently enabling affective response did not lead to 

perseverance in mathematical reasoning; the children’s pleasure in creating trials led to 

the creation of further trials rather than to generalising and forming convincing arguments. 

The augmented intervention facilitated the children to generalise and form convincing 

arguments and this resulted in notably different affect; the children expressed feelings of 

pride and satisfaction. Persevering in mathematical reasoning to the point of generalising 

and forming convincing arguments resulted in a qualitatively different cognitive–affective 

interplay. 

In Chapter 4, Figures 4.3, 4.4 and 4.5 represent the pathways of the reasoning processes 

predominantly used by the study group. In this section, I augment these Figures with the 

affective processes demonstrated by the study group. The augmented diagrams, Figures 

5.1, 5.2 and 5.3, represent the interplay between cognition and affect predominantly 

observed in the study group. 

In all lessons, including the BL, the children expressed their experience of pleasure in 

engaging with mathematical challenge. This facilitated the study group to embark on all 

the mathematical reasoning activities with an enabling affective response. As the study 

group comprised children purposively selected for their limited perseverance in 

mathematical reasoning, I had anticipated that their difficulties might have impacted on 

their affective experience when commencing activities involving mathematical reasoning. 

My anticipation arose from Ashcraft and Moore’s study (2009, discussed in Chapter 2) 
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about how mathematical anxiety can be aroused when solving mathematical problems 

involving reasoning, and that this can manifest in children aged 10–11 as 

apprehensiveness. However, none of the study group, in spite of the difficulties reported 

by their teachers in their persevering in mathematical reasoning, appeared to begin the 

activities with any expressions of anxiety or apprehension. 

In the BL, I noticed a correlation between the children’s feelings of pleasure and their use 

of random specialisation. Six of the study group derived pleasure from randomly 

specialising to create trials, even though this did not lead to the creation of further magic 

Vs. Two of the study group expressed frustration after their trials from random 

specialisation did not enable them to progress in the activity. With still no progress, in 

spite of on-going trials, the pair expressed exasperation and despondency. This is 

congruent with Goldin’s (2000) negative affective pathway; if a child is bewildered and 

does not choose an effective approach, frustration sets it and if no way forward is found, 

the emotions become increasingly negative, even leading to despair. For David and 

Emma, this emotional pathway seemed to be cognitively disabling and to prevent them 

from listening to T2’s explanation of what made one of the Vs magic. This resonates with 

what Hannula (2002) describes as emotions biasing attention. Perhaps more surprising is 

how the other six children maintained an enabling affective pathway in spite of their lack 

of cognitive progress; this combination of limited progress in mathematical reasoning and 

apparently enabling affect is contrary to Goldin’s (2000) idealised affective pathways. 

Goldin (2000) indicates that experiences in mathematical problem solving activities in 

which cognitive progress is limited result in an affective pathway that leads towards 

anxiety, fear and despair. 

The study group children had been chosen because of the limited progress they 

commonly made in mathematical reasoning; this was illustrated by the limited progress 

that they made in the BL. However, they did not seem to have developed a trait emotion 

(Hannula, 2011b) that was negative, or what Goldin (2000) refers to as negative global 

affect. These authors do not offer guidance on how long or how many experiences it takes 

to create the trait aspect of emotion in mathematical reasoning; it is possible that the 

children in the study group had not yet had enough experiences for their limited cognitive 

progress to result in negative trait or negative global affect. The absence of a disaffected 

trait, or negative global affect, perhaps enabled them to maintain their engagement in 

creating trials throughout the lesson. Figure 5.1 augments the cognitive pathway of the 

children’s reasoning processes (shown in Figure 4.3) to represent the interplay between 

cognition and affect predominantly observed in the study group during the BL. 
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Figure 5.1: Interplay between cognition and affect predominantly observed in the study group in the BL 

In RL1 and RL2, the teachers applied the initial intervention and all of the study group 

were able to progress from random specialisation to systematic specialisation and pattern 

spotting. All began RL1 and RL2 with expressions of pleasure at the mathematical 

challenge, and as in the BL, this created affectively enabling conditions for the creation of 

multiple trials, typically beginning with random specialisation. The successful trials 

resulted in the children experiencing pleasure, whilst unsuccessful trials led to frustration 

in some instances. The expressions of frustration, exemplified in Excerpt 5.20, were 

significant. They triggered the children to have another go, and their provisional use of 

number cards facilitated the creation of new trials with ease and speed so that the 

experience of frustration was short lived, as explained by Michelle (Excerpt 5.24): 

116	
  	
  Michelle	
   You	
  can	
  [use	
  the	
  number	
  cards	
  to]	
  just	
  change	
  really	
  fast	
  if	
  you	
  get	
  it	
  wrong,	
  	
  
	
   	
   you	
  can	
  just	
  be	
  like	
  [models	
  switching	
  cards	
  around	
  quickly]	
  until	
  you	
  get	
  it	
  	
  
	
   	
   right.	
  

Excerpt 5.24: Post-RL4 interview transcript 

The incorrect trials that resulted in frustration also began to focus the children’s attention 

on how not to arrange the numbers, with specific attention of the odd/even property of 

adjacent numbers that created invalid trials; this laid the foundations for generalising. 

The pleasure derived from creating successful trials commonly led the study group to 

create more trials rather than to seek patterns in the trials that had been generated; there 

seems to be a bi-directional interplay between creating trials and the resulting pleasure or 

frustration, and this may have created the conditions for the children to persist in creating 

increasing numbers of trials. 

The provisional use of representations facilitated the pace of creating trials. The 

concurrent creation and adjustment of trials reported in Section 4.2.3 supported the 
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pattern 

Mathematical 
challenge 

Pleasure 
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randomly 

Pleasure 

Frustration 
Exasperation 
Despondency 

(David and Emma) 
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children to spot patterns and this was a source of pleasure and excitement. However, 

whilst there were some instances of conjecturing and generalising, the pleasure and 

excitement gained from spotting and creating patterns predominantly led to more 

specialising and the creation of further trials. 

Figure 5.2 augments the cognitive pathway of the children’s reasoning processes shown 

in Figure 4.4 to represent the interplay between cognition and affect predominantly 

observed in the study group during the RL1 and RL2. It shows the development in the 

children’s perseverance in mathematical reasoning following the initial intervention 

compared to the BL (Figures 4.3 and 5.1). However, Figures 5.1 and 5.2 illustrate the 

similarity in affect. The consistency in children’s affect between the BL and RL1–RL2 does 

not echo the development seen in the children’s cognition across these lessons. 

 

Figure 5.2: Interplay between cognition and affect predominantly observed in the study group in RL1 and RL2 

In RL3 and RL4, the teachers applied the augmented intervention (Section 4.2.3). All 

seven children who attended RL3 and RL4 were able to progress from specialising and 

pattern spotting to conjecturing, generalising and forming arguments as to why the 

generalisation might be true. As in RL1 and RL2, the children enjoyed the prospect of 

engaging in activities involving mathematical challenge. This pleasure facilitated their 

engagement with creating trials, and the children’s rapid creation of trials through their 

provisional use of number cards enabled successful solutions to be established quickly. 

There was interplay between the children’s specialisation and their experience of 

frustration or pleasure depending on whether their trials created successful solutions. As 

they began to specialise systematically by placing the numbers according to their 

odd/even property, they became increasingly aware of and able to articulate conjectures 

about the emerging pattern of odd numbers. This was a source of both pleasure and 

excitement. Notably, through this period, the children seemed to experience pleasure from 
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creating multiple successful trials. Consequently, once they had established that the 

conjecture, to create successful solutions the odd numbers need to be positioned in the 

middle and corners, seemed to be true, they returned to creating further solutions through 

systematic specialisation. However, the augmented intervention focused on embedding 

an explicit focus on generalising and convincing into the activity. Five of the study group 

were able to generalise how to create successful solutions, and form an argument that 

they found convincing as to why the generalisation was true; this resulted in feelings of 

pride and satisfaction, and for Alice, even elation (Excerpt 5.21, line 128: I’m over the 

moon with joy). This seems to reflect the cognitive–affective relationship articulated by 

Lambdin (2003), that developing deep mathematical understanding through mathematical 

reasoning is intellectually satisfying. Moreover, in their expressions of excitement, 

satisfaction and pride, these five children appear to have experienced the deep emotional 

engagement associated with mathematical intimacy (DeBellis and Goldin, 2006). 

However, Marcus and Ruby’s affective responses to their generalisations and related 

arguments were more tempered. Significantly, they did not use their mathematical 

understanding to account for their emotions as the other five did. Whilst there were 

aspects that both Marcus and Ruby could have improved in their arguments, this was not 

dissimilar to Alice, David and Mary’s work (Table 4.2 and Appendix 4.1). What enabled 

Mary, Alice and David to experience pride and satisfaction with their generalisations and 

arguments whilst Marcus and particularly Ruby did not? Ruby’s comment during RL4, “I 

think mine’s all wrong” (Excerpt 5.23) suggests that she doubted the validity of her 

generalisation and accompanying argument. Mason et al. (2010) describe three aspects 

of forming a convincing argument, convince yourself, convince a friend and convince an 

enemy. In RL4, it seems that Ruby had not convinced herself. Mary, Alice and David, in 

relating their pride to their understanding, seemed to have convinced themselves of the 

validity of their argument. Marcus’s pride in task completion rather than understanding 

may indicate that he is only partially convinced by his explanation. Hence, the extent to 

which each child was convinced that they had been able to explain why the generalisation 

was true may have impacted on their affective responses at the end of the lesson. Figure 

5.3 augments the cognitive pathway of the children’s reasoning processes shown in 

Figure 4.5 to represent the interplay between cognition and affect in the study group in 

RL3 and RL4. 

This has an important potential implication for primary teachers. Six of the study group in 

the BL and the entire study group in RL1 and RL2 predominantly reported that they 

enjoyed and gained pleasure in the mathematical reasoning activity but in these lessons 

their perseverance in mathematical reasoning was limited. Consequently, children’s 
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apparent enjoyment of activities involving mathematical reasoning is not indicative of their 

perseverance in mathematical reasoning. However, expressions of pride and satisfaction, 

particularly when related to understanding, resulted from the formation of generalisations 

and arguments that convinced the child. Consequently, it is pride and satisfaction, 

particularly when related to understanding, rather than simply enjoyment, that are affective 

indicators of perseverance in mathematical reasoning.

 

Figure 5.3: Interplay between cognition and affect predominantly observed in the study group in RL3 and RL4 

5.3 The interplay between conation, cognition and affect 

In Section 2.4 I positioned perseverance in mathematical reasoning as a conative 

construct with engagement focused on potential lines of reasoning as one of its aspects. 

In this section, I explore the interplay between the children’s engagement, their areas of 

focus and their cognitive and affective responses. Overall, engagement was high in all 

lessons in the study, including in the BL (in spite of the limited progress the children made 

in relation to mathematical reasoning). There were small increases in the children’s 

engagement from BL to RL1–RL2 and from RL1–RL2 to RL3–RL4. Following the BL, 

there were no instances of disengagement following periods of frustration (as experienced 

by David and Emma in the BL) and following RL2 there were no instances of the children 

creating an alternative activity (as Alice, Ruby and Emma did in RL2). In relation to the 

children’s perseverance in mathematical reasoning, what seems to be most significant 

about their engagement is not these improvements in engagement but the focus of their 

engagement. 

In the BL, the study group focused on either applying arithmetic operations to the Vs or 

creating successful solutions. In this lesson there was no evidence that six of the group 

focused their attention on comparing Vs and this prevented them from noticing patterns 

and relationship, and hence progressing with any reasoning. Following a prompt from T3, 
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Marcus and Mary noted which of their solutions created magic Vs. This enabled them to 

make comparisons between successful and unsuccessful solutions (Excerpt 4.6), which 

facilitated pattern spotting and the creation of successful trials with larger Vs. Figure 5.4 

augments the representation of the interplay between cognition and affect in the BL, 

illustrated in Figure 5.1, by representing the interplay between the two areas of focus 

(shaded in yellow) and the children’s cognitive and affective responses. 

 

Figure 5.4: Focus of study group's engagement in relation to cognition and affect in the BL 

In RL1 and RL2, the children’s focus was again characterised by persistently creating 

trials. There was a specific focus on what they were trying to achieve through this 

specialisation, for example, creating the largest pyramid total or creating all possible pond 

arrangements from Cuisenaire rods. However, as in the BL, the study group did not focus 

on making comparisons between the parameters that they could manipulate. This 

impacted on their approach to specialisation. For example, in RL1, no comparison was 

made between the pyramid totals and the order of the base numbers, even though the 

children were focused on trying to create pyramids with the largest totals. This led to a 

tendency to specialise randomly and meant that the children were not focused on looking 

for a relationship or pattern. This limited their capacity to apply other reasoning processes 

such as generalising. In RL2, four of the study group focused on creating all possible 

square ponds and paths. The achievement of this goal, and with no further areas of focus, 

concluded the activity for Alice, Ruby and Michelle. In this instance, the teachers’ 

extension to the activity, to tabulate the numerical patterns, did not enable the children to 

establish a new focus for their engagement. This lack of progress towards generalising 
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and convincing was perhaps further compounded by the children’s evident enjoyment of 

the specialising process; in both RL1 and RL2 they enjoyed creating trials and this may 

have not provided the impetus to move to other reasoning processes. What had appeared 

to be potentially enabling affect seemed to impede the children’s movement to other 

reasoning processes because it maintained and re-enforced their focus on specialising. 

This restricted their progress to other reasoning processes and their perseverance in 

mathematical reasoning. Figure 5.5 augments the representation of the interplay between 

cognition and affect in RL1 and RL2 illustrated in Figure 5.2; it represents the interplay 

between the areas of focus and the children’s cognitive and affective responses following 

the initial intervention. 

 

Figure 5.5: Focus for the study group's engagement in relation to cognition and affect in RL1 and RL2 

In RL3 and RL4, the teachers applied the augmented intervention, embedding specific 

opportunities for generalising and constructing convincing arguments into the activities. In 

this lesson, the study group did persevere in mathematical reasoning to form a 

generalisation and most of the group were able to form an argument that they were 

convinced by about why the generalisation was true (Table 4.2; Appendix 4.1). The yellow 

shading in Figure 5.6 represents these foci. 

However, prior to the children’s written generalisations and arguments, the study group’s 

central focus was on specialising. One characteristic of their specialisation in RL3 and 

RL4 was their apparent focus on the particular rather than the general in creating trials. 

Michelle and Marcus’s engagement exemplifies this. Michelle seemed to treat each 

number as a particular case in seeking a solution and this caused her to create many 
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trials in a short time, believing that if she just created enough examples, or had more 

numbers, she would find a solution that worked (Excerpt 4.20). In this instance, she had 

not moved from specialising to pattern spotting, using generalisations of the properties of 

the numbers to facilitate conjecturing. This kept her engaged in cycles of creating trials. A 

similar incident arose for Marcus; he had successfully generalised about the location of 

odd/even numbers by applying general rules for the difference between odd and even 

numbers (Excerpt 4.21). However, he persisted in creating random trials and not applying 

the understanding that he had evidently developed. The habitual focus on particular 

numbers rather than seeing numbers in terms of their properties caused a delay in the 

children’s moving from specialisation to other reasoning processes and resulted in 

persistent specialising. 

A second characteristic of the study group’s specialising was their focus on creating 

multiple successful solutions; this seems to reflect Williams’ (2014, p.30) interpretation of 

persistence as “keeping on trying no matter the quality of the ‘try’”. Alice and Ruby derived 

so much enjoyment from this that once they had focused for a short time on drafting a 

written explanation of their generalisation (Photographs 4.29, 4.30) they returned to 

specialising and creating further examples (Excerpt 4.25). 

Figure 5.6 augments the representation of the interplay between cognition and affect in 

RL3 and RL4 illustrated in Figure 5.3; it represents the interplay between the areas of 

focus and the study group’s cognitive and affective responses following the augmented 

intervention. The orange shading in Figure 5.6 represents Alice and Ruby’s return to a 

focus on specialising, prior to re-focusing on generalising. 
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Figure 5.6: Focus for the study group's engagement in relation to cognition and affect in RL3 and RL4 

The augmented intervention did enable the study group to focus their attention and 

engagement on generalising and convincing and this resulted in successful perseverance 

in mathematical reasoning. However, there was an evident tendency in the study group 

children to focus their attention on specialising. The strategies used by the teachers 

supported the children to apply the understanding they had gained from specialising and 

move onto other reasoning processes. T2 used the time in RL3 for specialising, pattern 

spotting and beginning the discussions about generalising and convincing, but then 

allocated all of RL4 to drafting written explanations of the generalised pattern and why it 

worked. Consequently, in RL4, none of the study group in School 2 engaged in any 

further specialising. T3 used a similar activity, More Numbers in the Ring as a pre-cursor 

to Number Differences (Tables 3.1 and 4.1). Significantly, in the first activity the children 

explored number rings of different sizes (Photographs 4.25 and 4.26), creating a small 

number of successful solutions on each ring before exploring a different ring. This gave 

them the opportunity to compare not just solutions within one ring, but also solutions 

across different rings. Whilst the children in the study group continued to benefit from 

scaffolding questioning from T3 to do this (Excerpt 4.20, line 191), this kind of activity 

encouraged them to look for the general rather than the particular. This is not dissimilar to 

the strategy recommended by Brown and Walter (2005), in which the question ‘what if 

not?’ is posed to change one parameter of the problem (Section 2.1.2), in this instance, 

Form 
convincing 
argument 

Generalise Mathematical 
challenge 

Pleasure 

Specialise 
randomly 

Specialise 
systematically 

Spot 
pattern 

Pleasure Pleasure 
Excitement 

Frustration in 
unsuccessful 

trials 

Form, test, 
adjust 

conjecture 

Pleasure Pride 
Satisfaction 

Focus: creating successful solutions Focus: explaining 
generalisation & why it works 

 Focus: creating further 
successful solutions 

Focus: explaining generalisation and why it works 



 167 

the number of numbers in the ring. This encouraged generalisation beyond one particular 

circumstance. 

It seems that the augmented intervention with its focus on generalising and convincing 

was successful in facilitating the study group’s progress in these processes as it focused 

their attention away from specialising using the particular case and towards generalising. 

It seems that the augmented intervention with its focus on generalising and convincing 

was successful in facilitating the study group’s progress in these processes as it focused 

their attention and engagement away both from specialising towards generalising, and 

from the particular case towards the general. However, the study group’s seemingly 

habitual tendency towards specialisation meant that the movement from specialising 

towards generalising was not straightforward. This has implications for teachers. The 

children in this study demonstrated good levels of engagement in all the RLs (and largely 

also in the BL) and apparent positive affective responses to the activities. These 

responses could result in teachers’ overlooking, or even accepting, children’s lack of 

perseverance in mathematical reasoning. However, by attending to what children are 

focusing on and attempting to steer this, children, like those in the study group who had 

previously demonstrated limited perseverance in mathematical reasoning, may be better 

placed to persevere towards generalising and forming convincing arguments. 

5.4 Conclusions 

This chapter has explored the little understood (Hannula, 2011b) bi-directional interplay 

between cognition and affect during children’s mathematical reasoning and has extended 

this to examine the impact of conative focus on cognition and affect, using a tripartite 

analysis of cognition, affect and conation. 

It has shown that when children with limited perseverance in mathematical reasoning 

engage in activities involving reasoning, their common emotional response was pleasure; 

they enjoyed the activities in spite of limited progress in reasoning. However, when they 

were able to persevere in reasoning to generalise and form arguments that they found 

convincing, they expressed pride and satisfaction. There appeared to be a qualitative 

change in the children’s emotional experience, from pleasure to satisfaction and pride, 

when the children developed the mathematical understanding to be able to generalise and 

form convincing arguments. Expressions of pride appeared to result from the child forming 

an argument which he or she found convincing. This bi-directional interplay between 

children’s cognitive understanding during mathematical reasoning, and their affective 

experience of satisfaction and pride augments existing literature. 
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The examination of children’s mathematical reasoning using the tripartite psychological 

classification of cognition, affect and conation is a development of existing literature. The 

use of conative components to augment analysis of the interplay between cognition and 

affect offers a new approach to analysing the interplay between cognition and affect in 

mathematics learning. It revealed the role that focus played in both restricting and 

enabling children’s perseverance in mathematical reasoning. The children were highly 

engaged throughout the RLs and largely in the BL. However, the focus of their 

engagement typically centred on specialising (Mason et al., 2010) by creating trials, an 

example of persistence, rather than persevering to pursue of a line of mathematical 

reasoning to produce assertions and reach and justify conclusions. This limited their 

perseverance in mathematical reasoning to spotting patterns and forming conjectures. 

The augmented intervention facilitated the study group children to shift their focus from 

specialising towards generalising and convincing and improved their perseverance in 

mathematical reasoning. 

There are potential implications of these findings for teachers’ practice. Whilst high levels 

of engagement and pleasure seem to be positive conative and affective responses, they 

are poor indicators of children’s perseverance in mathematical reasoning. More reliable 

indicators that children are persevering in mathematical reasoning are expressions of 

pride and satisfaction and a focus on explaining a generalisation and why it is true. 

In this chapter, I have formulated the idea that seemingly positive affective and conative 

responses may nevertheless be indicative of limited perseverance in mathematical 

reasoning and, moreover, that they could even present a barrier to this. In the next 

chapter, I develop this idea and explore the difficulties that the children in the study group 

encountered in persevering in mathematical reasoning. 
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Chapter 6: Barriers to Perseverance in Mathematical 
Reasoning 

In Chapter 5, I argued that seemingly positive affective and conative responses may be 

indicative of limited perseverance in mathematical reasoning and, moreover, that they 

could even present a barrier to this. In this chapter, I develop the idea of barriers to 

perseverance in mathematical reasoning and seek to answer research sub-question 3: 

What difficulties do children need to overcome in order to persevere in mathematical 

reasoning? 

6.1 The nature of difficulties in persevering in mathematical 
reasoning 

The idea of overcoming difficulties in learning by applying general learning perseverance 

strategies has recently acquired attention in English primary schools (Section 1.3). In 

relation to mathematics, Johnston-Wilder and Lee (2010) identify perseverance as one 

aspect of the construct mathematical resilience and argue that it is needed to overcome 

mathematical difficulties. In this chapter, I explore the nature of difficulties or delays that 

the children in this study experienced and needed to overcome to be able to persevere in 

mathematical reasoning and consider what they did to “push themselves” and “keep 

going” as advocated by learning displays (Figure 1.1) in their classrooms. 

The following vignettes describe different presentations of the specific difficulties or delays 

experienced by children in the study group during mathematical reasoning activities. Each 

of the vignettes has, to some extent, been presented in the two preceding chapters. To 

support the reading of the arguments in this chapter I have re-presented some data. 

In each vignette, I exemplify and discuss the child’s difficulty in persevering in 

mathematical reasoning, beginning each with a diagrammatic representation of the 

interplay between cognition, affect and conation, colour-coded blue, pink and yellow 

respectively. The conative elements address either the children’s self-regulation or focus 

for engagement and striving, whichever is most significant to the vignette. I discuss each 

vignette in relation to the components of perseverance in mathematical reasoning detailed 

in Tables 2.1 and 3.12. 

6.1.1 Vignette 1: David’s difficulty in the BL 

David’s experience of difficulty in the BL initially arose from not being able to compare the 

Vs in such a way that he was able to spot a pattern or relationship. His persistent efforts to 
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establish which V was magic and why, and the interplay between cognition, affect and his 

use of self-regulatory processes are represented in Figure 6.1. 

The following observations of David’s dialogue and actions record his increasing disaffect 

as he engaged with this task: 

24	
   David	
   I	
  don't	
  get	
  it,	
  shall	
  we	
  just	
  guess?	
  
27	
   	
   David	
  writes	
  on	
  a	
  mini-­‐whiteboard	
  and	
  immediately	
  rubs	
  out	
  his	
  writing	
  
34	
   David	
  	
   Look	
  what	
  I	
  figured	
  out	
  [he	
  shows	
  Emma	
  a	
  blank	
  mini-­‐whiteboard]	
  
39	
   	
   During	
  whole	
  class	
  discussion,	
  David	
  leans	
  back	
  away	
  from	
  the	
  table	
  
74	
   	
   Whilst	
  working	
  with	
  Emma,	
  David	
  rocks	
  back	
  on	
  his	
  chair	
  
78	
   David	
  	
   Do	
  we	
  do	
  random?	
  
82	
   	
   David	
  leaves	
  his	
  seat	
  to	
  seek	
  help	
  from	
  the	
  teacher	
  
169	
   David	
   This	
  is	
  impossible	
  

Excerpt 6.1: BL observation transcript 

At the beginning of the activity, David’s dialogue reveals his awareness of his lack of 

understanding of the task (line 24). This was swiftly followed by three expressions of 

negative affect. He immediately erased writing, which is perhaps indicative of 

dissatisfaction with what was written (line 27); he used sarcastic humour to reflect his 

feelings (line 34); he began to distance himself physically from the table and the work 

(lines 39, 74). Mason et al. (2010) advocate expressions of being stuck as a way to 

become free of incapacitating emotions to facilitate taking different actions. Following his 

expressions of being stuck, David was able to adopt an active affective regulatory 

approach (Malmivuori, 2006) in response to his emotions; he used his feelings of 

frustration to seek strategies to overcome the difficulty. This led him to adopt two 

approaches, specialising randomly by guessing (lines 24 and 78): I have represented this 

in Figure 6.1 with a blue colour-code to identify it as a reasoning process, but positioned in 

the conative row to signify its self-regulatory application) and seeking help from the 

teacher (line 82). At this point, David appeared to demonstrate what Debellis and Goldin 

(2006) describe as mathematical integrity; he was able to adopt an affective stance that 

enabled him to apply self-regulatory actions to continue to work on the activity, in the 

knowledge that that he was making limited progress. However, when neither of these 

resulted in his overcoming the difficulty, he expressed frustration (line 169). 
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Figure 6.1: Representation of the impact of affect on David's perseverance in mathematical reasoning in the 
BL 

Following this, the teacher held a mini-plenary with the whole class which established the 

reason why one of the Vs in Figure 4.2 was magic (and the other not). However, David did 

not appear to look at the explanations modelled on the board nor listen to this class 

discussion, hence this intervention from the teacher did not aid David’s understanding. 

The following extract (partly shown in Chapter 5, Excerpt 5.4) details David’s response 

following the mini-plenary. 

182	
   	
   David	
  yawns	
  and	
  props	
  his	
  head	
  up	
  on	
  his	
  elbow	
  
183	
  	
  David	
   How	
  do	
  you	
  do	
  this?	
  [in	
  exasperated	
  and	
  resigned	
  tone]	
  
190	
   	
   David	
  leaning	
  back,	
  body	
  positioned	
  low	
  in	
  chair	
  
194	
  	
  David	
   I	
  don’t	
  get	
  it	
  [in	
  a	
  cross	
  tone]	
  
199	
  	
  David	
  	
   [To	
  T2]	
  It's	
  impossible.	
  I	
  don't	
  get	
  it.	
  Can	
  you	
  give	
  us	
  a	
  clue?	
  

Excerpt 6.2: BL observation transcript 

His body position reflected his increasing disengagement (lines 182, 190) and his tone of 

voice became increasingly exasperated, frustrated and resigned (lines 183, 194, 199). 

David initially adopted what Malmivuori (2006, p.153) describes as “active regulation of 

affect”; he was aware that he was frustrated and this resulted in his taking two cognitive 

actions, to specialise randomly (lines 24, 78) and to seek help from T2 (lines 169, 199). 

When this did not lead to overcoming the difficulty, his affective regulatory response 

became increasingly negative and impacted cognitively by biasing his attention away from 

the task (Di Martino and Zan, 2013a). Consequently, when the characteristics for a V 

being magic were presented and explained in the mini-plenary, David had disengaged 

and did not listen. Malmivuori (2006, p.153) describes this response as “automatic 

affective regulation” in which negative affective responses can act sub-consciously to 

impede higher order cognition. 
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Having missed the opportunity to understand how to compare the Vs, David’s negative 

affect developed to the point of despair, in a similar way to that depicted in Goldin’s (2000) 

negative affective pathway. This resulted in David’s demonstrating limited perseverance in 

mathematical reasoning; he was not able to progress beyond random specialisation and 

was not able to spot patterns (Figure 6.1) and this prevented him from conjecturing and 

generalising. 

For David, there was considerable interplay between cognition, affect and conation during 

this activity. It seems that the cognitive difficulties that David experienced at the start of 

the task, when he did not know how to begin, and his lack of progress having applied two 

self-regulatory strategies, led him to experience swift and negative affect that impacted on 

his capacity to engage with a mini-plenary that could have developed his understanding. 

Excerpt 6.3, from the post-lesson interview, indicates that this cognitive–affective–

conative interplay may also have impacted on David’s feelings about the subject of 

mathematics and his relationship with it. 

226	
   David	
   I'm	
  pretty	
  good	
  [at	
  mathematics],	
  it's	
  my	
  best	
  subject	
  but	
  I	
  still	
  [inaudible,	
  	
  
	
   	
   voice	
  trailing	
  to	
  silence]	
  
228	
   David	
   I	
  don't	
  know	
  how	
  maths	
  has	
  anything	
  to	
  do	
  with	
  this,	
  it's	
  just	
  hard	
  
316	
  	
  Researcher	
   When	
  you	
  are	
  in	
  maths	
  lessons	
  normally,	
  is	
  it	
  often	
  that	
  you	
  feel	
  a	
  bit	
  puzzled	
  
	
   	
   or	
  a	
  bit	
  unsure?	
  
318	
   David	
  	
   Sometimes,	
  but	
  a	
  lot	
  of	
  the	
  time	
  I'm	
  pretty	
  good	
  cos	
  it's	
  my	
  best	
  subject	
  

Excerpt 6.3: Post-BL interview transcript 

It seems that David had previously experienced feelings of self-worth from his 

engagement with mathematics; he felt he was good at the subject, that it was his best 

subject (lines 226 and 318). This suggests that David had experienced what Debellis and 

Goldin (2006, p.132) describe as mathematical intimacy, a “deep, vulnerable emotional 

engagement” with mathematics. David’s potential vulnerability is evident twice during 

Excerpt 6.3. First in the way that his voice trailed away in line 226, as he tried to articulate 

how he could be good at mathematics and yet found the activity in the BL so difficult. 

Second, in line 318, he re-stated his proficiency in mathematics to explain that he only 

experienced being stuck in mathematics lessons sometimes. Debellis and Goldin argue 

that mathematical intimacy can fluctuate and an individual can experience intimate 

betrayal if frustration is not resolved in mathematical exploration. For David, this apparent 

intimate betrayal resulted in his questioning how the activity in the BL could have even 

been mathematics, his best subject. 
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6.1.2 Vignette 2: Michelle’s difficulty in the BL 

Michelle’s difficulty in reasoning in this activity arose from her misapplication of the activity 

criteria and was compounded by her focus on and pleasure in creating what she believed 

to be successful solutions. This relationship is represented in Figure 6.2. 

 

Figure 6.2: Representation of the impact of affect and conation on Michelle's perseverance in mathematical 
reasoning in the BL 

Immediately after the activity had been explained, Michelle expressed her understanding 

of one of the criteria of the activity, to only use the numbers 1–5 (Excerpt 6.4): 

10	
  	
   Grace	
   Shall	
  we	
  do	
  1	
  to	
  10?	
  
11	
   Michelle	
   But	
  we	
  have	
  to	
  do	
  1	
  to	
  5	
  

Excerpt 6.4 [and 4.3]: BL observation transcript 

 

Photograph 6.1: Michelle's solutions to the Magic V activity 

Following this exchange, Michelle created two solutions, in each of which the arms of the 

V summed to the same total, but she used the numbers 1 and 3–6 instead of the numbers 

1–5 (Photograph 6.1). 
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Later in the lesson Michelle focused on trying to achieve a given total for each arm rather 

than using the given numbers to create equal totals for each arm. This is evidenced 

through her statement: 

141	
   Michelle	
   Let’s	
  try	
  and	
  make	
  [each	
  arm]	
  10	
  

Excerpt 6.5 [and 4.4]: BL observation transcript 

Michelle’s difficulty in applying the given criteria prevented her from finding valid solutions 

to the task. With no valid solutions to compare, she was unable to seek patterns, for 

example to notice that all solutions had an odd number at the base of the V. 

Consequently, Michelle did not create and test conjectures about the location of odd and 

even numbers nor form generalisations about this. When the activity was extended to 

create Vs comprising more than 5 numbers or a different set of five consecutive numbers, 

Michelle did not have enough understanding of the behaviour of the numbers 1–5 from 

which to formulate further reasoning. 

Whilst Michelle’s difficulty arose from her misapplication of the original activity criteria, her 

lack of meta-cognitive strategies to monitor her application of the problem criteria limited 

her capacity to realise and address this. Michelle’s focus was on creating solutions rather 

than seeking patterns and relationships and her belief she was creating successful 

solutions perhaps inhibited any application of self-regulatory, monitoring actions. Had her 

focus been on pattern spotting, she may have realised that there were few emerging 

patterns, and this may have triggered the application of meta-cognitive strategies. 

Whilst Michelle’s misapplication of the activity criteria and her focus on creating solutions 

rather than looking for patterns were barriers to her perseverance in mathematical 

reasoning, they also contributed to an additional, perhaps surprising, barrier. The creation 

of apparently successful solutions gave Michelle great pleasure and did not provide the 

stimulus for active regulation of affect; Michelle’s pleasure did not trigger her to monitor 

her emotions to inform cognitive action. Her lack of meta-cognition on experiencing 

pleasure is an instance of Malmivuori’s (2006) automatic regulation of affect, in which the 

affective feedback mechanism operates at a low level of control. The pleasure that 

inhibited Michelle’s self-regulation could be regarded as a positive emotional state. 

However, this positive affect was not synonymous with an enabling affect; rather it acted 

to constrain Michelle’s perseverance in mathematical reasoning. If Michelle’s focus had 

been on noticing patterns rather than creating solutions, she may have experienced 

frustration at the lack of emerging patterns. This may have stimulated active regulation of 

affect (Malmivuori, 2006) and a self-regulatory response more enabling in facilitating 

perseverance in mathematical reasoning. 
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6.1.3 Vignette 3: Marcus’s difficulty in RL2 

Marcus experienced some difficulties in applying his understanding of the concept of a 

square to the square area of the pond and the square perimeter of the path. This caused 

a delay in his being able to construct examples systematically and in his capacity to notice 

patterns. There were two moments that facilitated an enabling self-regulatory response, 

each stimulated by the lesson features rather than Marcus’s monitoring of cognitive or 

affective experiences. Figure 6.3 represents the interplay between cognition, conation and 

affect during this lesson. Marcus’s affective response remained one of benign pleasure 

throughout the activity and I have represented this as one on-going bar that does not 

interact with cognition or conation; I do not suggest that Marcus’s pleasure was 

insignificant, rather that the interplay between cognition and conation was more significant 

as a catalyst for developments in cognition. 

 

Figure 6.3: Representation of the impact of conation on Marcus's perseverance in mathematical reasoning in 
RL2 

Photographs 6.2, 6.3 and 6.4 show his first constructions of ponds and surrounding paths. 

In these trials, Marcus endeavoured to use a systematic approach as he intentionally 

constructed increasingly large examples. However, he did not employ a system to the 

selection of Cuisenaire rods to achieve this. Following an overheard conversation 

between the teacher and another child, in which the teacher questioned the square-ness 

of a pond, Marcus realised that the pond in Photograph 6.3 was not square. Rather than 

removing one of the red 2cm rods to create a 22 pond, Marcus added three 1cm rods to 

create a 32 pond (Photograph 6.5). He also realised that the path needed to completely 

surround the pond, so also added 1cm rods to the corners of the path. 
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Photograph 6.2: Marcus's first construction of a pond and path 

 

Photograph 6.3: Marcus's second construction of a pond and path 

 

Photograph 6.4: Marcus's third construction of a pond and path 

 

Photograph 6.5: Marcus's revision to his second construction of a pond and path 

At this stage in the lesson, there was no apparent system to the way in which Marcus 

constructed the square area of the ponds or the square perimeter of the path. Photograph 

6.6 shows Marcus’s constructions after thirty-five minutes of exploration. Although this 

appears to indicate little progress in Marcus’s constructions, his exploration did seem to 

have deepened his understanding; when asked by the teacher how he might check that a 

pond was square he modelled lining up one 5cm rod perpendicular to five 5cm rods 

(Photograph 6.7). 
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Photograph 6.6 [and 4.23]: Marcus's pond constructions after 35 minutes 

 

Photograph 6.7: Marcus's check that the Cuisenaire rods represented 52 

T3 then asked the class to look at the work of other children and invited comments on 

what they had seen. Marcus discussed with the teacher how he particularly liked one 

child’s work because it had been arranged in an ordered sequence that revealed the 

colour patterns. Marcus was able to use this reflection to develop his own constructions 

and Photograph 6.8 shows his response to the activity at the end of the one-hour lesson. 

He had: 

• successfully constructed examples of 12, 22, 32, 42, 52, 72 ponds and surrounding paths 

• developed consistency in the structure of the construction of all but one example in 

this sequence which enabled patterns in the structure of the ponds and paths to be 

visible 

• positioned the examples in order. 
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Photograph 6.8: Marcus's representations at the end of RL2 

During this lesson, Marcus was developing his understanding of the concept of ‘square’ 

through exploring enactive representations of squares. This activity and his exploration 

with the Cuisenaire rods provided Marcus with opportunities to construct a deeper 

understanding of the concept through structured exploration, the second stage of Dienes’ 

Dynamic principle (1964). In addition, the Cuisenaire rods provided opportunities to: 

• abstract the concept of square through perceptual variability (Dienes, 1964) as the 

activity necessitated the construction of a square area and a square perimeter 

• generalise the concept through mathematical variability (Dienes, 1964) as squares of 

different sizes were constructed. 

There were two points in the lesson when Marcus utilised ideas emerging in the room. 

First, he overheard the dialogue between T3 and a peer about square-ness. Second, he 

engaged in the opportunity to look at other children’s constructions. In both instances, T3 

had created a mathematics environment which Liljedahl (2004, p.186) describes as filled 

with “ideas in the air’’. These were significant opportunities for Marcus, as the ideas 

stimulated moments of self-regulation in which he reflected on and improved his 

constructions he had made. However, the construction of understanding to create a 

systematic sequence of squares, whilst necessary for reasoning about the sequence, was 

time-consuming. The difficulties Marcus faced in constructing this understanding left no 

time during this lesson to reason about the emerging patterns. 

6.1.4 Vignette 4: Alice and Ruby’s difficulty in RL2 

In RL2, Alice and Ruby’s difficulty in persevering in mathematical reasoning arose from 

their focus on creating a set of physically constructed solutions rather than pursuing a line 

of reasoning. The interplay between their cognition, affect and conation is represented in 

Figure 6.4. 
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I have presented data relating to this vignette previously in Sections 4.2.2 and 4.2.3. Here 

I summarise the key aspects of the difficulty that the girls experienced. 

Alice and Ruby spent the first 35 minutes of the lesson creating a set of systematically 

ordered and systematically constructed ponds and paths from Cuisenaire rods (each pond 

was represented by n number of Cuisenaire rods of length n, and each path by 4 

Cuisenaire rods of length n+1; Photograph 6.9). 

 

Photograph 6.9 [and 4.16]: Alice and Ruby's systematic creation and ordering of ponds 

 

 

Figure 6.4: Representation of the impact of affect and conation on Alice and Ruby's perseverance in 
mathematical reasoning in RL2 

T2 then re-focused the task from constructing the ponds and seeking patterns in the 

Cuisenaire constructions, to tabulating the size of the ponds and paths and seeking 

numerical patterns. Alice and Ruby did not explore numeric tabulation of the ponds and 
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surrounding paths and hence were not able to seek numerical patterns. Rather, for the 

remaining 22 minutes of the lesson, they used the Cuisenaire rods to make unrelated 

tower constructions (Photograph 6.10). 

 

Photograph 6.10 [and 4.24]: Alice and Ruby's Cuisenaire tower constructions 

Despite the teacher re-focusing the task towards developing numerical representations 

and seeking numerical then generalised patterns, Alice and Ruby made no further 

progress in their reasoning about the relationship between pond and path size and were 

not able to generalise or form convincing arguments about this. 

After the lesson, when asked why they built towers rather than focus on seeking numerical 

patterns, Ruby replied: 

330	
   Ruby	
   I	
  thought	
  we	
  didn't	
  need	
  to	
  do	
  it	
  on	
  the	
  paper	
  because	
  we'd	
  already	
  done	
  it	
  

Excerpt 6.6 [and 4.18]: Post-RL2 interview transcript 

T2’s focus was to develop an awareness of physical and numeric patterns to pave the 

way for generalising about this sequence. However, the girls did not appear to share this 

focus, attending instead solely to physical construction and pattern spotting relating to 

these constructions. This formed their focus; they strived to complete the ordered set of 

Cuisenaire ponds and paths, took pleasure from this and once completed, their focus on 

the task ceased. This may be an example of the difficulty that Ellis (2007) describes in 

utilising observed patterns as a platform for generalisation. However, the affect 

experienced by the girls appears significant in creating a barrier to persevering in 

mathematical reasoning; their pleasure and excitement in creating systematic 

constructions seemed to lead to further, unrelated, construction rather than to alternative 

processes such as seeking numeric patterns, which could have progressed their 

reasoning in this activity. 

The girls’ difficulty in persevering in mathematical reasoning arose from their focus on 

physically constructing ponds and paths rather than focusing on potential lines of 
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reasoning arising from the emerging patterns. This was compounded by their pleasurable 

affective response to successful construction as this seemed to create a desire for further 

physical construction. 

6.1.5 Vignette 5: Alice and Ruby’s difficulty in RL3 

In RL3, Alice and Ruby’s difficulty in persevering in mathematical reasoning arose from 

their focus on and enjoyment of creating solutions rather than explaining why a 

generalisation is true. The interplay between their cognition, affect and conation is 

represented in Figure 6.5. 

I have presented data relating to this vignette previously in Sections 4.3.1, 5.1.7 and 

5.1.8. Here I summarise the key aspects of the difficulty that the girls experienced. 

 

Figure 6.5: Representation of the impact of affect and conation on Alice and Ruby's perseverance in 
mathematical reasoning in RL3 

Alice and Ruby began to arrange the digit cards and very quickly found two solutions 

(Photograph 6.11). 

 

Photograph 6.11: Alice and Ruby's first two solutions to Number Differences 

The pair continued to generate successful solutions and appeared to gain a great 

pleasure from this; they cheered with delight at each successful solution and worked with 

considerable speed (Photograph 5.7). T2 continually prompted and reinforced the need to 
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generalise the emerging patterns and explain why these worked. This was a conscious 

action to overcome the difficulty noted by Reid (2002) that children may not have the 

expectation to form generalisations and reasons why they are true. This was met with a 

groan from Alice (Excerpt 5.17) that seemed to indicate her disappointment and 

annoyance at being asked to stop creating solutions. However, when they had 

established thirteen solutions, Alice and Ruby focused on developing their description and 

explanation of patterns (Photographs 6.12 and 6.13).

 

Photograph 6.12 [and 4.29]: Ruby's written description of the generalisation 

 

Photograph 6.13 [and 4.30]: Alice's written description and partial explanation of the generalisation 

Of note in both explanations is the girls’ capacity to generalise the pattern of how to 

generate successful solutions. Alice had also begun to explain why the arrangement 

worked by anchoring her argument (Lithner, 2008) in the difference between odd and 

even numbers. However, their focus on forming a convincing argument then ceased and 

both girls returned to making many more solutions: 

334	
   Alice	
   One	
  more	
  to	
  go	
  and	
  then	
  we've	
  got	
  23	
  [solutions]	
  

Excerpt 6.7 [and 4.25]: RL3 observation transcript 
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In this lesson, there was opportunity for Alice and Ruby to persevere in mathematical 

reasoning to produce assertions, reach conclusions and to develop arguments to support 

these (Lithner, 2008); Figure 6.6 represents this potential reasoning pathway. 

 

Figure 6.6: Alice and Ruby's potential reasoning pathway in RL3 

Whilst the girls remained highly focused throughout, at the point when they were well 

positioned to construct arguments to explain patterns, their focus shifted back to the 

creation of examples. They no longer strived to form convincing arguments. Rather they 

continued to strive but with their own, self-determined goal of creating many solutions. 

Alice and Ruby encountered the difficulty described by Ellis (2007) in using their 

understanding of the generalised pattern as a foundation for explaining the generalisation, 

hence they were not able to establish convincing arguments about why the numbers 

needed to be arranged as they described. Their decision to return to creating further 

solutions could have been the result of pull or push factors; the draw of the pleasure 

gained from creating solutions or the rejection of engaging with the difficult reasoning 

associated with explaining. It seems that both push and pull factors may have influenced 

the girls’ actions. This is a further example of how an apparently positive emotion can 

restrict perseverance in mathematical reasoning. 

6.2 Discussion 

In each of the five vignettes, the children experienced difficulties in persevering in 

mathematical reasoning; however, Vignette 1 stands apart from the others for three 

reasons. First, it is the only vignette in which a child actively applied self-regulatory 

approaches solely as a result of reflection on his own work. In Vignette 3, Marcus also 

applied self-regulatory approaches but these resulted from other stimuli in the classroom. 

Second, it is the only vignette and indeed the only instance throughout this research, in 

which a child expressed frustration, exasperation and despondency; this is very similar to 

the negative emotional pathway described by Goldin (2000). In the remaining four 

vignettes, and in each instance in the research in which a child faced a difficulty in 

persevering in mathematical reasoning, frustration, if expressed at all, was short lived and 

resolved, and the affective pathway did not lead to exasperation, despondency, anxiety or 

other such disabling emotions. Third, and notably, David is the only child in these 
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vignettes and in the entire study, that expressed awareness that he was stuck or 

experiencing difficulty. In the other four vignettes, there was no evidence that the children 

were aware that they faced difficulty in mathematical reasoning and no expressions of 

“being stuck” (Mason et al., 2010, p.45). These differences between Vignette 1 and the 

other vignettes are interconnected. David was able to recognise that had encountered a 

difficulty and shortly after this began to experience frustration. He initially used this 

emotion as a catalyst for action (Mason et al., 2010) and actively regulated his affective 

response (Malmivuori, 2006). Here, there are clear connections between awareness of 

facing difficulty, awareness of emotions and the use of these to self-regulate action. 

David’s chosen actions, however, were not conducive to overcoming the difficulty and his 

affective pathway became increasingly negative; this restricted his capacity to self-

regulate as the lesson progressed. 

Goswami (2015, p.16) argues that gaining strategic, conscious control over thoughts, 

feelings and behaviours is a significant but difficult aspect of learning in the primary years. 

However, if children are not aware that they have encountered a difficulty, how can they 

apply the self-regulatory approaches needed to overcome it to persevere in mathematical 

reasoning? In Vignettes 2, 4 and 5, the children’s limited use of self-regulation resulted in 

their applying what Tanner and Jones (2003) describe as habitual rather than pro-active 

behaviours; the three girls had an inclination to specialise and create solutions and to 

either continually engage in specialising, as Michelle did in the BL, or revert to this 

process having engaged in other reasoning processes, as Alice and Ruby did in RL3. 

There was considerable evidence in these three vignettes that the girls kept going and 

pushed themselves as advocated in the learning displays in Figure 1.1. This striving did 

not happen in the context of conation that was focused on the pursuit of a reasoned line of 

enquiry. Rather, the girls’ conative focus, what they engaged with and strived for, was the 

creation of solutions. Consequently, their striving or their drive to keep going, was 

characterised by a repetitious, dogged determination towards the creation of multiple 

solutions; whilst persistent, this response was not conducive to and did not result in 

persevering in a reasoned line of mathematical enquiry. Lee and Johnston-Wilder (2017) 

assert that perseverance is more significant than persistence in demonstrating the trait 

construct, mathematical resilience; it seems that in the related state construct, 

perseverance in mathematical reasoning, persistence is similarly insufficient. 

The situation for the girls in Vignettes 2, 4 and 5 was complicated by their positive 

affective responses. They were not aware that they had encountered a difficulty in 

persevering in mathematical reasoning. This led to persistent, repetitious, habitual 

behaviours, which were compounded by the pleasure they derived from these actions. 
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Consequently, the girls were not able to access any emotional clues relating to 

experiencing difficulty; this seemed to be a powerful factor inhibiting their capacity to self-

regulate. Interestingly, whilst David’s affective pathway in Vignette 1 was similar to the 

negative affective pathway described by Goldin (2000), the girls’ affective pathways in 

Vignettes 2, 4 and 5 were not comparable with Goldin’s (2000) positive affective pathway. 

The emotions that they expressed seemed to centre on pleasure and excitement rather 

than comprising the broader range of emotions, such as curiosity, bewilderment and 

satisfaction that Goldin (2000) describes. The stability of their emotions did not seem to be 

conducive to activating the self-regulatory actions, such as Malmivuori’s (2006) active 

regulation of emotions, that facilitate perseverance in pursuing a reasoned line of enquiry 

and this further hampered their capacity to apply self-regulatory approaches. It hence 

seems that Goldin’s enabling affective pathway occurs within the context of enabling 

conative conditions, in which the focus is on the pursuit of a reasoned line of enquiry. In 

the absence of this focus, the individual emotions experienced might appear to be positive 

but the stable emotional pathway does not facilitate self-regulatory actions, and hence is 

not enabling of perseverance in mathematical reasoning. 

In summary, Michelle, Alice and Ruby’s perseverance in mathematical reasoning in 

Vignettes 2, 4 and 5 was limited by their lack of self-regulation. Three characteristics of 

the girls’ approaches restricted their capacity to self-regulate. Their: 

• lack of awareness that they had encountered a barrier to mathematical reasoning 

• conative focus centred on creating solutions rather than the pursuit of a reasoned line 

of mathematical enquiry and this resulted in repetitions, habitual behaviours 

• feelings of pleasure derived from repetitious behaviours. 

If children are not aware of their own difficulties in mathematical reasoning or that they 

have encountered a barrier to persevering in mathematical reasoning, then it is difficult to 

apply self-regulatory approaches to overcome this. There is a further consequence. The 

children in this study who were not aware that they had encountered a difficulty in 

mathematical reasoning did not show outward displays of being stuck; there were no 

expressions of frustration, being stuck or requests for help that might indicate self-

knowledge of having met a difficulty. This meant that there was no overt evidence and 

effective cues for T2 and T3 that the children had met difficulties in reasoning. In the 

cases of Vignettes 2, 4 and 5, this lack of evidence was exacerbated by their apparent 

pleasure in the activities. Consequently, teachers need to look beyond expressions of 

frustration or being stuck, and not be misled by expressions of pleasure, to assess 

whether children have encountered a barrier to mathematical reasoning. 
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As the children’s affective and conative responses may mask their experience of difficulty, 

teachers could look to their cognitive responses. In Vignettes 2 and 5, repetitious 

behaviours and in particular repeated specialisation, were the main mathematical process 

used by the girls. Hence, children’s repeated and persistent use of specialisation could be 

indicative of their having encountered a difficulty in mathematical reasoning. Teachers 

might look for and use this as a cue to adopt pedagogic approaches that support children 

to overcome the barrier and to progress from repeated specialisation. 

In Vignette 3, Marcus’s difficulty in mathematical reasoning did not arise from repeated 

specialisation but the difficulty he had in specialising. Like the girls in Vignettes 2, 4 and 5, 

Marcus seemed unaware that he had encountered a barrier to mathematical reasoning; 

however, unlike the girls, he demonstrated instances of self-regulating his approach which 

were stimulated by hearing dialogue or seeing the work of others. Liljedahl’s (2004) 

strategy, to fill the air with ideas, provided the catalyst in each instance for Marcus to 

engage in self-regulation and adjust his approach. T3’s use of this approach was well 

timed for Marcus; his focus was on the construction of square ponds and paths from 

Cuisenaire rods and his use of the ideas in the room provided timely stimuli to facilitate his 

successful progress toward creating a systematically constructed and ordered set. T3’s 

use of a fill the air with ideas approach seemed to be a valuable pedagogic strategy to 

support Marcus to apply self-regulation in his constructions, in spite of his lack of 

awareness of having encountered a difficulty. Liljedahl’s (2004) fill the air with ideas may 

be a strategy that teachers could use to support children to overcome barriers in 

mathematical reasoning by stimulating self-regulation. This could be used in a targeted 

way, having assessed that a particular child has encountered a difficulty, or in a more 

general way, to provide a stimulus for all children. 

A common feature in these vignettes was the children’s apparent lack of awareness of 

what mathematical reasoning looks and sounds like. For example: David randomly 

applied the four operations to the V arrangements rather than seeking to compare the Vs 

(Vignette 1); Michelle created what she believed to be successful solutions without looking 

for patterns and relationships in the solutions (Vignette 2); Alice and Ruby ceased their 

engagement with the activity once a set of Cuisenaire ponds and paths had been 

constructed rather than seeking to generalise the patterns they had noted (Vignette 4) and 

the pair returned to creating successful solutions once they had generalised but not fully 

explained the pattern (Vignette 5). In these examples, the children did not seem to be 

aware that mathematical reasoning is the pursuit of a line of enquiry to produce assertions 

and develop an argument to reach and justify conclusions and that it extends beyond 

creating examples and looking for and describing patterns and relationships. This has 
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implications for how teachers introduce and set goals for activities involving mathematical 

reasoning. Teachers’ questions that focus on finding solutions without a focus on 

generalisation and justification, such as How many solutions can you find? may lead 

children to interpret the goal as creating many solutions. The intention of such questions 

may be to prepare the ground for pattern spotting, leading to generalisation and forming 

convincing arguments, but it also serves to set a goal for children that inhibits their 

understanding of mathematical reasoning. In RL3 and RL4, T2 and T3 were able to 

overcome this by establishing the goal of the activities as explaining what happens and 

why. 

Developing teachers’ awareness and understanding of the construct perseverance in 

mathematical reasoning could support teachers to differentiate between general 

perseverance behaviours depicted in Figure 1.1 and the sharper focused perseverance in 

mathematical reasoning behaviours (Table 2.1) in two ways. First, perseverance in 

mathematical reasoning centres on producing assertions, developing arguments and 

justifying conclusions; this may raise teachers’ awareness of the need to focus conative 

behaviours on these outcomes rather than valuing behaviours that strive towards and 

focus on other targets, such as creating solutions. Second, awareness of how the 

conative construct impacts on cognitive outcomes and the movement between reasoning 

processes, from specialising and pattern spotting towards generalising and convincing, 

may alert teachers to children who are persisting in creating many solutions, but are not 

making progress, and hence persevering, in mathematical reasoning. 

6.3 Conclusions 

This chapter has shown that children are not necessarily aware that they have 

encountered a difficulty in mathematical reasoning; this is not discussed in existing 

literature. Whilst Goswami (2015) argues that developing self-regulatory approaches is a 

highly significant but difficult aspect of learning in the primary years, a lack of awareness 

of having encountered a barrier to mathematical reasoning makes it difficult to apply the 

self-regulatory actions that are required to persevere. 

The application of self-regulatory approaches is further inhibited if children have a 

conative focus on creating solutions rather than pursuing of a reasoned line of 

mathematical enquiry. Persisting in creating multiple solutions leads to repetitious, 

habitual behaviours which means that it operates within what Malmivuori (2006) describes 

as a weak self-regulatory system that does not foster self-regulatory actions. The 

importance of the children’s conative focus in facilitating self-regulation during 

mathematical reasoning is an extension to existing literature. 
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Some children can derive significant pleasure from a focus on creating solutions and the 

resulting repetitious behaviours. This presents a different emotional pathway from the two 

described by Goldin (2000); a pathway that can be represented by pleasure and 

excitement alone. This alternative pathway inhibits the children’s capacity to self-regulate 

in two ways. First, the pleasurable emotional response positively reinforces repetitious 

actions. Second, it does not enable the child to access emotional clues that a difficulty has 

been encountered. 

Children’s lack of awareness that they have encountered a difficulty in mathematical 

reasoning presents challenges for teachers. They need to look beyond expressions of 

frustration or being stuck and must not be misled by expressions of pleasure to assess 

whether children have encountered a barrier to mathematical reasoning. 

As children’s affective and conative responses may mask their experience of difficulty, 

teachers should look to the children’s cognitive responses. In particular, teachers could 

look for and use children’s repeated use of the specialisation process as an indicator that 

they have encountered a difficulty in mathematical reasoning. This can then be used as a 

cue to adopt pedagogic approaches that support children to overcome the difficulty and to 

progress from repeated specialisation to other reasoning processes. One pedagogic 

strategy that seemed successful in supporting self-regulation was Liljedahl’s (2004) 

strategy to fill the air with ideas. This provided the catalyst for a child to engage in self-

regulation and adjust his approach, in spite of his lack of awareness of having 

encountered a difficulty in mathematical reasoning. This approach could be used by 

teachers to support a particular child to overcome a difficulty or in a more general way to 

provide a self-regulation stimulus for all children. 

The findings in this chapter offer a contribution to practice. Children who encounter 

difficulties in persevering in mathematical reasoning are not necessarily aware of what 

mathematical reasoning looks and sounds like. This can result in their striving being 

focused on outcomes other than the pursuit a line of mathematical enquiry in which 

generalisation and justification are the end goals. The teachers in this study successfully 

overcame this by establishing the goal of the activities as explaining what happens and 

why. 

It is important that teachers are able to interpret the general learning perseverance 

behaviours depicted in Figure 1.1 in the context of mathematical reasoning. Developing 

teachers’ awareness of the construct perseverance in mathematical reasoning could 

support this as its focus on producing assertions, developing arguments and justifying 

conclusions can raise teachers’ awareness of the need to focus conative behaviours on 



 189 

these outcomes, rather than valuing behaviours that strive towards and focus on other 

goals. Furthermore, awareness of how the conative construct impacts on cognitive 

outcomes and the movement between reasoning processes can alert teachers to children 

who appear to be persisting in creating many solutions, but are not making progress in 

mathematical reasoning. 

In the final chapter, I summarise the research findings, draw conclusions from this study 

and make recommendations for practice and further research. 
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Chapter 7: Conclusions and Recommendations 

7.1 Summary of findings 

The aims of this research were to: 

• explore the nature of perseverance in mathematical reasoning 

• develop pedagogic approaches to enable children in primary schools to persevere in 

mathematical reasoning 

• generate new understandings about the development of primary school children’s 

perseverance in mathematical reasoning. 

These aims have been achieved by addressing four research questions (RQ), the major 

findings of which are summarised below. 

7.1.1 Research questions 

RQ1: How can primary teachers improve children’s perseverance in mathematical 

reasoning? 

• Interventions that improved year 6 children’s perseverance in mathematical reasoning 

comprised: opportunities to represent mathematical thinking in a provisional way, a 

focus on generalising and convincing, and time for children to engage in these 

processes. 

When teachers provided children with representations that can be used in a 

provisional way and embedded a focus on generalising and convincing into 

mathematics lessons with time to do this, children who had limited perseverance in 

mathematical reasoning demonstrated improved mathematical reasoning. They were 

able to pursue a line of enquiry and progress from making trials and spotting patterns 

to generalising and forming convincing arguments. 

RQ2: To what extent and how does the interplay between cognition and affect impact on 

children’s perseverance in mathematical reasoning? 

• I identified an emotional pathway during reasoning activities, not currently discussed in 

literature, in which children experience pleasure and excitement in spite of 

demonstrating limited perseverance in mathematical reasoning. This pathway 

presented a difficulty (hence is also a finding relating to RQ4); it inhibited the 

development of perseverance in mathematical reasoning as it reinforced repetitious 

actions and inhibited the use of emotional cues to stimulate self-regulation. 

• There was a qualitative change in children’s affective experience, from pleasure to 

satisfaction and pride, when they were able to persevere in mathematical reasoning. 
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RQ3: What impact, if any, does the children’s conative focus have on this interplay? 

• Children with limited perseverance in mathematical reasoning tended to focus on, and 

enjoyed creating multiple solutions (see also RQ4). The interventions facilitated 

children to shift their focus from creating solutions towards generalising and forming 

convincing arguments. This improved their perseverance in mathematical reasoning 

and led to expressions of pride and satisfaction. 

• Children’s application of the self-regulatory processes necessary to persevere in 

mathematical reasoning was compromised by a focus on creating multiple solutions 

and their lack of awareness of having encountered a difficulty (see also RQ4). 

RQ4: What difficulties do children need to overcome in order to persevere in mathematical 

reasoning? 

• Children who had limited perseverance in mathematical reasoning were not 

necessarily aware of what mathematical reasoning looks and sounds like. 

Consequently, they were not aware of when they encounter difficulties in 

mathematical reasoning. This made it difficult to apply the self-regulatory actions 

required to overcome barriers and persevere in mathematical reasoning. 

• The children’s focus on creating multiple solutions through repetitious actions created 

a barrier to persevering in mathematical reasoning. This difficulty was exacerbated by 

their enjoyment of creating multiple solutions (see also RQ2). Their pleasure in 

repetitious actions to create multiple solutions focused their attention on specialising 

and this led to persistent specialising. This made it difficult to progress to generalising 

and forming convincing arguments. 

7.1.2 Further findings 

As discussed in Section 2.3, my research was part of a new trend towards the use of 

affective constructs in vivo. This resulted in the development of new methods for 

analysing the resulting data and three further findings: 

• The conative focus played an important role in the interplay between children’s 

cognition and affect during mathematical reasoning. Hence, the use of the tripartite 

psychological classification of cognition, affect and conation to examine children’s 

mathematical reasoning offers a new approach to analysing the interplay between 

cognition and affect during mathematics learning. 

• I successfully developed codes to analyse cognitive, affective and conative data 

relating to the state aspects of mathematical reasoning (see Tables 3.11–3.13). 
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• The diagrams developed and used in this study form an effective representation of the 

state aspects of children’s cognition, affect and conation, and the interplay between 

these domains during mathematical reasoning. 

7.2 Contributions to knowledge 

Hannula (2011b) describes a bi-directional interplay between cognition and affect, 

although the processes involved in this are not yet well understood. My study did not seek 

to explain these processes from a psychological perspective, but can report on the 

qualitative impact of cognitive-affective interplay. It showed that when children with limited 

perseverance in mathematical reasoning engage in activities involving reasoning, their 

common emotional response was pleasure; they enjoyed the activities in spite of their 

very limited progress in reasoning. However, when they were able to persevere in 

reasoning so that they generalised and formed arguments that they found convincing, 

they expressed pride and satisfaction. When children develop the mathematical 

understanding to be able to generalise and form convincing arguments, there appears to 

be a qualitative change in their emotional experience, from pleasure to satisfaction and 

pride. 

The use of the conative components to augment analysis of the interplay between 

cognition and affect revealed the role that children’s focus plays in restricting and enabling 

perseverance in mathematical reasoning. During all the RLs and largely during the BL, the 

children were engaged in the reasoning activities. However, the focus of their 

engagement was on specialising by creating trials rather than the pursuit of a line of 

mathematical reasoning to produce assertions and reach and justify conclusions. This 

focus limited their perseverance in mathematical reasoning to spotting patterns and 

forming conjectures. When the children’s focus shifted towards generalising and forming 

convincing arguments, their perseverance in mathematical reasoning improved. The study 

found that the children’s conative focus plays an important role in the interplay between 

cognition and affect during mathematical reasoning. Examination of children’s 

mathematical reasoning using the tripartite psychological classification of cognition, affect 

and conation, offers a new approach to analysing the interplay between cognition and 

affect in mathematics learning. 

This study found that children who have limited perseverance in mathematical reasoning 

are not necessarily aware of when they encounter difficulties in reasoning. Whilst the 

development of self-regulatory approaches is regarded as a significant but difficult aspect 

of learning in the primary years (Goswami, 2015), my study found that the children’s lack 

of awareness of having encountered a barrier to mathematical reasoning makes it even 
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more difficult to apply the requisite self-regulatory actions to overcome it, and successfully 

persevere in mathematical reasoning. 

The study showed that the children’s application of self-regulatory approaches was further 

compromised by a conative focus on creating multiple solutions, rather than the pursuit of 

a reasoned line of enquiry. Consequently, as in the related trait construct, mathematical 

resilience (Lee and Johnston-Wilder, 2017), persistence in making trials is insufficient in 

enabling perseverance in mathematical reasoning. This seemed to be because creating 

multiple solutions leads to repetitious, habitual behaviours, which means that it operates 

within what Malmivuori (2006) describes as a weak self-regulatory system that does not 

foster self-regulatory actions. The importance of the children’s conative focus in facilitating 

self-regulation during mathematical reasoning is an extension to existing literature. 

Some children derived significant pleasure from a focus on creating solutions and the 

repetitious behaviours that result from this. This presents a different emotional pathway 

from the two described by Goldin (2000): a pathway that can be represented by pleasure 

and excitement alone. This alternative pathway inhibits the children’s capacity to self-

regulate in two ways. First, the pleasurable emotional response positively reinforces 

repetitious actions. Second, it does not enable the child to access emotional clues that a 

difficulty has been encountered. The emergence of an additional pathway during 

mathematical reasoning activities, based on empirical data, augments Goldin’s (2000) two 

idealised pathways. This new pathway and its impact on restricting perseverance in 

mathematical reasoning is a significant finding of my study. 

In Chapter 2, I argued that analysing data using the tripartite psychological domain might 

“call attention to aspects that [might otherwise] be neglected” (Hilgard, 1980, p.116) and 

may help to guard against preference towards one or two aspects of the mental activity 

involved in mathematical reasoning; this was found to be the case. Categorising data by 

psychological domain provides a valuable approach to analysing children’s mathematical 

reasoning and the tripartite focus enabled the development of new knowledge. The codes 

developed for each psychological domain and applied as part of the data analysis process 

(Section 3.4.2) were successful as they enabled location and analysis of key data to 

inform understanding of the impact of the interventions. Diagrammatic representations 

were developed to facilitate analysis within the cognitive domain and between domains, 

for example, see Figures 7.1, 7.2 and 7.3. 
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Figure 7.1 [and 4.6]: Progression in the reasoning pathways from the BL to RL1–RL2 and RL3–RL4 

 

 
Figure 7.2 and [and 5.6]: Focus for the study group’s engagement in relation to cognition and affect in RL3 
and RL4 

 

 
Figure 7.3 [and 6.4]: Representation of the impact of affect and conation on Alice and Ruby’s perseverance in 
mathematical reasoning in RL2 
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These diagrammatic representations enabled a focus on the fluctuating nature of the state 

aspects of the children’s cognition, affect and conation. This facilitated analysis of the: 

• impact of our interventions on children’s perseverance in mathematical reasoning 

(Figure 7.1) 

• interplay between cognition, affect and conation during mathematical reasoning 

activities (for example, Figure 7.2) 

• barriers children can experience during mathematical reasoning activities that restrict 

their capacity to persevere in mathematical reasoning (for example, Figure 7.3). 

At CERME9, Di Martino et al. (2015) recommended that more research should focus on 

the implications of the research findings to date relating to affect during mathematics 

learning, and in particular on the implications for class-based interventions. The tripartite 

psychological coding and diagrammatic approach to representing the state aspects of 

cognition, affect and conation during mathematical reasoning offers a new approach for 

researchers and teacher-researchers to analyse and illustrate the findings from class-

based mathematics research. 

7.3 Contributions to practice 

My findings show that children who demonstrate limited perseverance in mathematical 

reasoning can persevere in mathematical reasoning when teachers apply an intervention 

with the following elements: 

• provide children with opportunities to represent mathematical thinking in a provisional 

way 

• embed a focus on generalising and convincing into mathematics activities 

• provide time for children to generalise and form convincing arguments. 

Following interventions comprising these elements, the study group children were able to 

progress from not being able to make any successful trials, to making trials and spotting 

patterns and also to generalising and forming convincing arguments. To embed a focus 

on generalising and forming convincing arguments, the teachers created opportunities for 

the children to reason orally and in writing. They used sentence starters to support the 

children’s expression of their reasoning such as: “I think that…”, “It might be…” It’s 

something to do with…” “It’s got to be because…”. The children needed additional time to 

use the understanding gained from making trials, spotting patterns and forming 

conjectures to progress to forming and justifying generalisations. Two mathematics 

lessons on consecutive days afforded the time to do this. The combination of sentence 

starters, dialogue and writing activities enabled the children to persevere in mathematical 
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reasoning by producing assertions, developing arguments and reaching and justifying 

conclusions. The interventions impacted on children’s capacity to persevere in 

mathematical reasoning; this offers an approach to advance existing practice. 

The study found that children who encounter difficulties in persevering in mathematical 

reasoning were not necessarily aware of what mathematical reasoning looks and sounds 

like. This resulted in their striving being focused on outcomes other than the pursuit of a 

line of mathematical enquiry in which generalisation and justification were the end goals. 

The teachers in this study successfully overcame this by establishing the goal of the 

activities as explaining what happens and why. This finding offers a further contribution to 

practice. 

7.4 Recommendations for practice 

In Chapter 2, I argued that mathematical reasoning is an important aspect of mathematics 

learning in the primary school and perseverance is required to pursue a line of reasoning. 

However, primary teachers find this aspect of mathematics difficult to teach and statutory 

policy provides limited support for the development of children’s mathematical reasoning. 

This study has identified an additional pedagogic difficulty that teachers will need to 

overcome: identifying children who are demonstrating limited perseverance in 

mathematical reasoning. This is not straightforward for three reasons. 

First, children can lack awareness that they have encountered a difficulty in persevering in 

mathematical reasoning and this means that teachers will need to look beyond 

expressions of being stuck, such as frustration. Second, children can express pleasure 

and excitement in spite of demonstrating limited perseverance in mathematical reasoning. 

This means that what appear to be positive affective responses are poor indicators of 

perseverance in mathematical reasoning, and teachers must not be misled by 

expressions of pleasure. Third, children may adopt a conative focus that is not conducive 

to perseverance in mathematical reasoning, such as repeatedly specialising to make 

many examples that apply the pattern they have spotted. These children can appear to be 

highly engaged in the activity but their persistent actions are not conducive to persevering 

in mathematical reasoning. Consequently, a high level of engagement, a seemingly 

desirable attribute for learning, is not a good indicator of successful perseverance in 

mathematical reasoning. 

Thus, enjoyment and high levels of engagement do not appear to be reliable affective and 

conative indicators to assess children’s perseverance in mathematical reasoning. In this 

study, observation of the cognitive reasoning processes in which the children were 

engaged did provide assessment information about the extent of the children’s 
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perseverance in mathematical reasoning. By focusing on the children’s use of reasoning 

processes rather than conative or affective indicators, we were able to make judgements 

about which reasoning process the children were using, whether they were using one 

process to inform the next, for example, using pattern spotting to form conjectures and 

generalisations, or whether they were repeatedly engaging in one process, typically 

specialising. 

To be able to be alert to the reasoning processes that children are using, teachers need to 

be familiar with these processes and how perseverance in mathematical reasoning is 

enabled by the movement towards generalising and forming convincing arguments. 

Diagrammatic representations of pathways of reasoning processes, and the movement 

between these processes, based on those in Figure 7.1, could be utilised by university 

mathematics education tutors to raise teachers’ awareness of reasoning processes, and 

the children’s application of and movement between these processes. This can help 

teachers to plan, enact and assess the impact of pedagogies that facilitate movement 

between reasoning processes and hence perseverance in mathematical reasoning. 

Children’s lack of awareness of having encountered difficulties in mathematical reasoning 

places additional importance on teachers’ assessments of their perseverance in 

mathematical reasoning; if children are limited in their capacity to recognise that a 

difficulty has been encountered, teachers’ interventions become significant in enabling the 

children to progress. Awareness of children’s movement between reasoning processes 

can alert teachers to those who appear to be persevering (by creating many solutions), 

but are not making progress in mathematical reasoning. 

In addition, the study shows that teachers can look beyond the cognitive domain for 

indicators of successful perseverance in mathematical reasoning. Whilst children’s high 

levels of engagement in and enjoyment of mathematical reasoning activities were not 

found to be effective indicators of perseverance in mathematical reasoning, expressions 

of pride and satisfaction did arise when the children formed generalisations and 

arguments that they were convinced by. Pride and satisfaction were more reliable 

indicators of successful perseverance in mathematical reasoning and children’s 

expression of these emotions may be valuable in guiding teachers’ assessments. 

It is important that teachers are able to interpret the general learning perseverance 

behaviours, such as those depicted in Figure 1.1, in the context of mathematical 

reasoning. Developing teachers’ awareness of the construct ‘perseverance in 

mathematical reasoning’, with its focus on producing assertions, developing arguments 

and justifying conclusions, would support this. It can raise teachers’ awareness of the 

need to focus conative behaviours on these outcomes, rather than valuing behaviours that 
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strive towards and focus on other goals, or valuing striving and high levels of 

engagement, without consideration of the focus. General learning perseverance 

behaviours, such as those illustrated in Figure 1.1 need to be augmented with a conative 

focus; for example: 

Push yourself to explain why the generalisation is true 

Keep going when things get difficult to convince yourself why this is true 

7.5 Recommendations for further research 

The findings from this research raise questions that could further develop understanding 

of the longitudinal and broader development of children’s perseverance in mathematical 

reasoning. 

In Section 2.2.1, I reported Goldin’s (2000) argument that repeated experiences of one 

emotion pathway during activities involving mathematical reasoning results in the 

formation of a global affective response (repeated experiences of the state aspect of 

affect impacts on the development of a child’s affective trait). Whilst my research 

addressed the state aspects of cognition, affect and conation, my findings have the 

potential for longitudinal impact on the development of corresponding traits. 

In Section 2.4.2, I located perseverance in mathematical reasoning as a state construct 

and an aspect of mathematical resilience (Johnston-Wilder et al., 2013) and reasoned that 

mathematical resilience had the characteristics of a trait construct. The state–trait 

relationship between these two constructs is interesting; would repeated experiences of 

successful perseverance in mathematical reasoning contribute to the development of 

children’s mathematical resilience? A longitudinal study could address the question: 

To what extent can a focus on perseverance in mathematical reasoning lead to the 

development of mathematical resilience? 

In their draft summary of twenty years of research of the CERME Affect and Mathematical 

Thinking Working Group, Hannula et al. (2017) reason that whilst researchers need to 

seek common terminology to articulate concepts relating to affect and mathematics 

learning, flexibility needs to be maintained so that new concepts can emerge. They cite 

both resilience (Lee and Johnston-Wilder, 2011a) and perseverance (Barnes, 2015) as 

examples of emerging concepts. The longitudinal study described would enable research 

on the relationship between these two concepts. 

I conducted my study with teachers who had expertise and interest in mathematics 

teaching and learning; in Section 3.2.5 I discussed the importance of their knowledge in 

the study. However, RQ1 relates to primary teachers rather than those with specific 
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expertise and this raises a query about the ease of application of my research findings for 

non-specialist primary teachers. This could be addressed through further research, 

addressing the questions: 

How can generalist primary pre- and in-service teachers, who do not have specialist 

mathematics knowledge, implement the findings from this research? How can university 

tutors support this? 

These questions could be answered by up-scaling the current study to include generalist 

pre-service and in-service primary teachers. This could take the form of a research study 

that comprises elements of professional development. 

7.6 Limitations of the study 

Four potential limitations emerge from this study, raising questions about generalisability 

and validity. 

In Section 3.2.3 I discussed how I had applied Gibson’s (1977) idea of affordances to 

mathematics learning to analyse the potential within each activity for children to apply the 

mathematical reasoning processes discussed in Section 2.1.2. However, whilst I 

endeavoured to use this analysis to seek activities with similar demands in mathematical 

reasoning, I could not be assured of exact equivalence. Hence, a degree of caution is 

needed in forming generalisations about the children’s responses to the lessons in the 

study. 

Gray (2009) raises the issue that action research studies can allow only tentative 

generalisations because of their tendency to be idiosyncratic and small-scale. In this 

study, I adopted a fallibilist approach and tested statements about actions to improve 

perseverance in mathematical reasoning in specific, though not purposive contexts. I 

argued that, if the statements were not falsified, they can be offered as tentative general 

solutions for use elsewhere. Hence, whilst this was a small-scale study, I formed what 

Bassey describes as “open generalisation[s]” (1995, p.98); my findings are descriptive of 

what is known in the contexts studied and predictive of what is unknown beyond the 

research contexts. Findings from this research can be applied in the form of predictive 

generalisations, for example the following predictive generalisation arises from the finding 

for RQ3: 

Children with limited perseverance in mathematical reasoning tend to focus on, 

and enjoy creating multiple solutions. Interventions to facilitate children to shift 

their focus from creating solutions towards generalising and forming convincing 

arguments will improve their perseverance in mathematical reasoning. 
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In this study, I sought to infer children’s emotions during mathematics learning, however, 

as Debellis and Goldin (2006, p.142) warn, this “can be a tremendous oversimplification”. 

Gómez-Chacón (2017, p.44) argues that emotions have “fuzzy boundaries” and 

“substantial interindividual variability in terms of expression of experience” and this makes 

it problematic to collect and analyse affective data. I sought to validate my inferences of 

children’s emotions by triangulating data arising from observations, audio recorded 

speech and utterances, and interviews and corroboration with the teachers. However, the 

acknowledged difficulty in collecting and analysing affective data in vivo is a potential 

limitation of my study and studies more generally that focus on affect in learning. 

In Section 3.3.1, I discussed my concerns that although I adopted a non-participant style 

of observation, my presence in the children’s mathematics lessons could affect what 

happened. I argued that my presence was consistently applied in all lessons in the study 

and that in other studies on affect in mathematics learning, children’s interest in data 

collection methods quickly waned. However, as anticipated, my presence in the children’s 

mathematics lessons did have some impact on their responses. My impact can be inferred 

from Emma’s response following RL4: 

313	
   Researcher	
   What	
  made	
  you	
  keep	
  going?	
  For	
  an	
  hour	
  you	
  worked	
  on	
  this	
  without	
  	
  	
  
	
   	
   stopping	
  
318	
   Emma	
   I	
  really	
  wanted	
  to	
  do	
  it.	
  I	
  haven't	
  really	
  done	
  any	
  of	
  the	
  other	
  ones,	
  like	
  

	
  	
   completed	
  it,	
  so	
  I	
  really	
  wanted	
  to	
  finish	
  this	
  one	
  

Excerpt 7.1: Post-RL4 interview 

Emma’s reference to “the other ones” [line 318] suggests that she had distinguished the 

five lessons that I observed in her class from other mathematics lessons, and recalled that 

she had not been able to complete the activities in the BL, RL1 and RL2. This seemed to 

have a conative impact as, having made this connection, she engaged with and strived to 

complete the activity in RL3–RL4. However, as the findings of the research have shown, 

demonstrating the conative capacities to strive and to stay engaged do not necessarily 

result in successful perseverance in mathematical reasoning. Other factors are significant 

in this endeavour, notably a conative focus on generalising and convincing and the 

capacity to use affective and cognitive cues to self-regulate. Hence, whilst my presence in 

Emma’s lessons seems to have impacted on her desire to strive and engage in RL3–RL4, 

it is not likely to have impacted on other factors significant in successful perseverance in 

mathematical reasoning. 
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7.7 Reflections on perseverance 

7.7.1 Personal perseverance 

The creation of metaphors during doctoral study is documented in literature (for example, 

Baptista and Huet, 2012; McCulloch, 2013; Pitcher, 2011) and throughout my doctoral 

study, I devised metaphors of my learning experiences. Baptista (2012) argues that 

doctoral students can use metaphors to create a shared vision with their supervisors. 

However, I chose not to share the metaphors that I devised and this led me to reflect on 

their value for my learning. 

Throughout my study, I was cognisant of the congruence between the children's 

perseverance that I was researching and the perseverance that I needed to conduct the 

research. I wondered if there were similarities in the features of perseverance required by 

the children and me. To support this reflection, I returned to three metaphors that I 

constructed during the study, detailed in Table 7.1, and considered the purpose each 

served. 

Metaphor Description 
Flying machine The data collection methods for the pilot study were the prototype 

of a flying machine, about to embark on its inaugural flight from 
the end of a pier.  

Mountaineering Awaiting supervisors’ feedback on writing: what would it mean for 
me? Would I need to hike all the fells in the Lake District, a 
difficult task but within my capability? Or would I need to climb all 
the Munros in Scotland, a long and extremely challenging task but 
perhaps, with expert support, just within my capability? Or would I 
need to scale Everest, a task that would require significant 
specialist support and extremely unlikely to be achievable for me? 

One step at a time The doctoral process is a series of small steps, each 
accompanied by a manageable task. Whilst I understood the 
overall end goal, at any one moment, I only took the next step. 

Table 7.1: Three metaphors constructed during doctoral study 

The flying machine metaphor supported a specific cognitive purpose; it enabled me to 

understand my data collection methods as provisional, worthy of trial during the pilot and 

likely to be subsequently developed for the main study. Through this metaphor I was able 

to recognise the value of the pilot study to test methods. 

I devised the mountaineering metaphor during a period in which I waited, with increasing 

apprehension, for my supervisors’ feedback on a significant amount of writing. McCulloch 

(2013) argues that metaphors enable cognition and emotion to be brought together, as 

understanding does not happen in isolation from emotion, and this seems a reasonable 

rationale for my creation of this metaphor. However, it also served a meta-affective 

purpose. By considering potential outcomes of my supervisors’ feedback and having 
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concluded that it was likely that I had the resources to be able to act on it, I created a 

meta-affective response in which I experienced my apprehension as keen anticipation 

rather than anxiety. This enabled me to receive the feedback with emotions that enabled 

action. 

I initially constructed the one step at a time metaphor to help prevent me from becoming 

overwhelmed by the magnitude of doctoral research in the context of time-limited, part-

time study, and it became a metaphor that I drew on throughout the research. However, I 

now realise that it served an additional and important conative purpose. By breaking the 

research down into a series of manageable steps, each period of study had a specific 

focus. This enabled me to make effective use of the available time for study. 

The metaphors that I created had cognitive, affective or conative purposes and seemed to 

reflect the tripartite psychological classification that I used to interpret children’s 

perseverance in mathematical reasoning. Perhaps because of their cognitive, affective 

and conative features, they supported and enabled my own perseverance throughout the 

research. 

7.7.2 Children’s perseverance 

The children in this study were selected for their limited perseverance in mathematical 

reasoning. Yet, throughout the BL, RL1 and RL2, they mostly expressed enjoyment of and 

engagement with reasoning activities and demonstrated persistence in that they kept 

trying; Excerpt 7.2 illustrates Mary’s expression of her effort in RL1: 

119	
  Mary	
   My	
  brain	
  was	
  sweating	
  

Excerpt 7.2 [and 5.14]: Post-RL1 interview transcript 

It could be argued that these children did follow the guidance depicted in Figure 1.1, to 

push yourself, get involved and keep going when things get difficult. However, I am 

concerned that the guidance about general learning perseverance, commonly depicted in 

primary school displays such as those in Figure 1.1, may impact on children’s affective 

and conative responses but not on cognitive outcomes, and moreover, that the short-term 

impact on affective and conative responses may be problematic in the long-term. This 

study has shown that children may be content giving a high degree of engagement 

without realising that they are making limited progress in mathematical reasoning. 

However, their affective and conative commitment may not endure beyond primary 

school. As mathematics increases in complexity and the children develop a realisation of 

their limited perseverance in mathematical reasoning, they may experience what Debellis 

and Goldin (2006) describe as intimate betrayal, in which their former emotional 
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engagement with mathematical activity, experienced in primary school, is replaced with 

frustration or negative outcomes. If this were to happen to the children in this study, they 

could be at risk of reflecting the data reported by TIMSS (Ina et al., 2012), that in England, 

19% of children at age 9–10 are not confident in mathematics, rising to 32% by age 13–

14. 

This study has shown how guidance relating to general learning perseverance could be 

augmented with greater detail on the cognitive, affective and conative factors that 

articulate how to push yourself or how to keep going when things get difficult so that the 

children’s efforts go beyond persistence and result in successful perseverance in 

mathematical reasoning. Specifically, guidance could include the following: 

• Mathematical reasoning involves processes including specialising, spotting patterns, 

forming, testing and adjusting conjectures, generalising and forming convincing 

arguments 

• Perseverance in mathematical reasoning results in movement between reasoning 

processes and towards forming generalisations and convincing arguments; this could 

be represented diagrammatically as in Figure 7.4 and used to support assessments of 

children’s perseverance in mathematical reasoning 

 

Figure 7.4 [and 2.2]: Potential pathway showing reasoning processes in pursuit of a line of mathematical 
reasoning 

• Mathematical reasoning should focus on the formation of generalisations and 

convincing arguments 

• Satisfaction and pride can result from the formation of generalisations and convincing 

arguments and hence these emotions might indicate successful perseverance in 

mathematical reasoning. 

Augmenting general learning perseverance guidance with cognitive, affective and 

conative factors that specifically focus on mathematical reasoning may enable children 

like Ruby, Emma, Marcus and Michelle to experience desirable cognitive outcomes as a 

result of their affective responses and conative effort. This could help to ensure that when 

the children feel that they are working hard, as Mary expressed in Excerpt 7.2, their efforts 

are focused, resulting in productive interplay between cognition and affect and successful 

perseverance in mathematical reasoning. 

Form convincing 
argument Generalise Specialise Spot 

pattern 
Form, test, 

adjust conjecture 
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Appendices 

Appendix 2.1: Extract from TIMSS 2011 Exhibit 8.4 Students Confident in 
Mathematics 

The extract below is taken from Trends in International Mathematics and Science Study 

(Ina et al., 2012) and shows excerpts of the data from Exhibit 8.4, Students Confident in 

Mathematics in relation to England and the international average. 

Country Grade 
(equivalent 
year group in 
England) 

Confident Somewhat 
confident 

Not confident 

England 4th (Year 5) 33% 48% 19% 

England 8th (Year 9) 16% 53% 32% 

International 

average 

4th (Year 5) 34% 46% 21% 

International 

average 

8th (Year 9) 14% 45% 41% 
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Appendix 2.2: Paper presented at 9th Congress of European Research in 
Mathematics Education, Feb 2015 

 

 

Improving children’s perseverance in mathematical reasoning: 

creating conditions for productive interplay between cognition 

and affect  

Alison Barnes 
University of Brighton, UK, a.barnes2@brighton.ac.uk  

This paper reports on a small-scale intervention that explored perseverance 
in mathematical reasoning in children aged 10-11 in an English primary 
school. The intervention facilitated children’s provisional use of 
representations during mathematical reasoning activities. The findings 
suggest improved perseverance because of the effect the intervention seemed 
to have on the bidirectional interplay between affect and cognition. This 
initially created affectively enabling conditions that impacted on cognition 
and then created cognitively enabling conditions that impacted on affect. A 
tentative framework describing this interaction is proposed. 
Keywords: perseverance, mathematical reasoning, affect, cognition, 
provisional. 
INTRODUCTION AND THEORETICAL BACKGROUND 

The development of mathematical reasoning is not straightforward; reasoning 
processes can trace a “zig-zag” route (Lakatos, 1976, p.42) which 
necessitates perseverance to navigate cognitive and affective difficulties. The 
cognitive processes relating to mathematical reasoning have been well 
documented over the last seventy years (for example, Polya, 1945) and in 
more recent decades there have been significant theoretical developments in 
the interpretation of the affective domain in relation to learning mathematics 
(for example, Hannula, 2011a). However, pedagogies to develop children’s 
mathematical perseverance are not yet articulated in the literature. This study 
sought to develop a practical intervention to improve children’s perseverance 
in mathematical reasoning. The significant interplay between cognitive and 
affective domains during mathematical learning has been noted at previous 
CERME conferences (Di Martino and Zan, 2013b; Hannula, 2011a) and this 
interplay provided the framework for analysing and interpreting the findings 
in this study.  
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The importance of reasoning 

The central importance of reasoning in mathematics education has been 
widely argued. For example, Yankelewitz et al (2010) assert that reasoning is 
crucial in the formulation and justification of convincing mathematical 
argument. Ball and Bass (2003b, p.28) make a connection between reasoning 
and the development of mathematical understanding, arguing that in the 
absence of reasoning, “mathematical understanding is meaningless”. They 
further argue that reasoning has a significant role in the recall of procedures 
and facts as it is the ability to reason, and not memory that enables a child to 
reconstruct knowledge when needed. The capacity to reason is therefore a 
significant factor in children’s learning of mathematics and there is value in 
framing a study with reasoning as its focus. 
Mathematical reasoning can be considered to include deductive approaches 
that lead to formal mathematical proofs and inductive approaches that 
facilitate the development of knowledge; Polya (1959) broadly interprets 
these two types of reasoning  as demonstrative and plausible reasoning 
respectively. In this study, my interpretation of mathematical reasoning was 
based on Polya’s (1959, p.7-9) “plausible reasoning” and includes the use of 
processes detailed by Mason et al (2010) such as: random or systematic 
specialising by creating examples; noticing patterns to formulate and test 
conjectures; generalising and convincing.  
Perseverance in reasoning 

In this study, I have interpreted perseverance in accordance with common 
dictionary definitions to mean “persistence in [mathematical reasoning] 
despite difficulty or delay in achieving success” (OxfordDictionaries, 2014). 
Lee and Johnston-Wilder (2011b, p.1190) identify perseverance as one aspect 
of the construct mathematical resilience and argue that it is needed to 
overcome “mathematical difficulties”. Such difficulties arise from the “zig-
zag” route that mathematical reasoning typically traces (Lakatos, 1976, p.42) 
and can be cognitive or affective in nature. 
Overcoming cognitive difficulties necessitates the use of meta-cognitive self-
regulatory approaches. For Mason et al (2010) this is characterised by 
developing internal monitoring to facilitate deliberate reflection on reasoning 
processes and their outcomes. Such monitoring might result, for example, in 
changes in approach or use of representation, or rejection of ideas. This 
fosters a fallibilistic approach (Charalampous and Rowland, 2013; Lakatos, 
1976) to engaging with mathematics and mathematical uncertainty. Mason et 
al (2010) emphasise the value of considering three phases of work when 
engaged in activities involving mathematical reasoning: entry, attack and 
review.  The entry phase, characterised by the making of random trials, and 
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the back and forth movement between phases, exemplifies and facilitates a 
fallibilistic, self-regulatory approach to mathematical engagement. 
Navigating Lakatos’ (1976, p.42) zig-zag path also has affective impact and 
this necessitates affective self-regulatory responses. Goldin (2000) proposes 
that affective pathways, comprising rapidly changing emotional states, arise 
during mathematical problem solving.  Malmivuori (2006, p.152) argues that 
these emotion responses “direct or disturb” mathematical thinking and 
activate either active or automatic self-regulatory processes. During active 
regulation of affective responses, an individual consciously monitors 
affective responses to inform cognitive decision making. By contrast, 
automatic affective regulation describes self-regulatory processes that act at a 
sub-conscious level in which negative emotions can act to impede the higher 
order cognition involved in reasoning.  
Successful engagement with mathematical reasoning can be rewarding and 
impact on an individual’s sense of self-worth. Debellis and Goldin (2006, 
p.132) describe mathematical intimacy as an affective structure, which 
portrays an individual’s potential “deep emotional engagement” with 
mathematics. They argue that intimate mathematical experiences can give 
rise to emotions such as deep satisfaction that impact on self-worth. 
However, positive mathematical intimacy could be jeopardised by 
experiencing failure. Debellis and Goldin (2006, p.138) reason that coping 
with swings in mathematical intimacy is a “meta-affective capability”, the 
development of which characterises successful problem solvers; this is a 
further presentation of the perseverance needed to be able to reason 
mathematically. 
THE STUDY 

In this study, I sought to improve children’s perseverance in mathematical 
reasoning by applying an intervention that provided children with 
opportunities to use mathematical representations in a provisional way.  
The importance of representation in mathematics learning has been 
extensively documented and this study draws significantly on Bruner’s 
(1966) modes of representation and Dienes’ (1964) Dynamic Principle. 
However, the notion of provisionality is less widely interpreted within 
mathematics education.  
Provisionality is an idea that is drawn on in information technology (IT) 
education (Leask and Meadows, 2000). The provisional nature of many 
software applications enables users to evaluate and refine a product as it is 
being created. Papert (1980) utilised the provisional nature of programming 
in designing the LOGO environment. LOGO enables a child to create 
instructions to move a turtle dynamically on the screen. It facilitates children 
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to conjecture, make trials and use the resulting data to make improvements. 
Hence, this software enables children to construct understanding through a 
trial and improvement, conjectural approach to mathematics; the intervention 
in this study sought to impact on children’s cognitive responses by applying a 
similarly provisional approach to children’s use of mathematical 
representations. 
Papert (1980) also notes how the provisional nature of programming impacts 
on the affective domain. It fosters an attitude that mathematical thinking is 
fallible (Charalampous and Rowland, 2013), that it concerns trial and 
improvement and conjecturing rather than the singular pursuit of right or 
wrong answers. Such an approach, he argues, makes children “less 
intimidated by a fear of being wrong” (Papert, 1980, p.23). Hence, by 
constructing an intervention that enabled children to work provisionally, this 
study also sought to impact on children’s affective responses. 
This research took place in an English primary school using an action 
research approach. The study comprised one Baseline Lesson in which the 
intervention was not applied, and two Research Lessons in which the teacher 
applied the intervention to her teaching approach. The teacher selected four 
children to form the study group based on her assessment that their 
perseverance in mathematical reasoning was limited and would benefit from 
improvement. Prior to each of the lessons, the teacher and I selected a 
mathematical activity that presented opportunities for mathematical 
reasoning. For the Research Lessons, we discussed how the children could 
use representations in a provisional way and the teaching strategies that 
might facilitate this. The teacher then created the detailed plans and taught 
the lessons.  
The fieldwork comprised collecting data from the three lessons, post-lesson 
interviews with children and an evaluation meeting with the teacher. During 
the Baseline and Research Lessons, I collected data on the four children 
relating to the cognitive and affective domains through non-participant 
observation and by taking photographs of the representations that they made. 
Audio recordings were made of the children’s dialogue during the lessons 
and I used these to augment the observation notes post-hoc. During 
observations, I used an approach similar to that used by Schorr and Goldin 
(2008) in their analysis of filmed lessons to gather data relating to key 
affective events. For example, I noted the children’s manner of engagement, 
their body position and the speed of their speech. I interviewed the study 
children immediately after each observation. The focus of the interview was 
threefold: to check my understanding of what I had observed; to gain the 
children’s interpretation of what had happened and why, and to explore the 
extent of the children’s mathematical reasoning. 
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This paper reports on the thick data arising from the second Research Lesson 
pertaining to two of the study group, Lucy and Emily. 
FINDINGS AND DISCUSSION 
Bidirectional interplay between cognition and affect (Di Martino and Zan, 
2013b) was evident during Lucy and Emily’s mathematical engagement in 
Research Lesson 2. However, it seemed to operate in different directions at 
different stages of their thinking. Hence, I have used Mason et al’s (2010) 
entry and attack phases of problem solving as a temporal framework for the 
presentation and discussion of findings. 
During Research Lesson 2, Lucy and Emily engaged as a pair with the 
problem: 

A square pond is surrounded by a path that is 1 unit wide. Explore what happens 
to the path length for different sizes of pond. 

Resources available: Cuisenaire rods, pencils, A3 plain paper. 

The impact the intervention during the entry phase 

 
During the entry phase (Mason et al., 2010), Lucy and Emily used Cuisenaire 
rods in a provisional way to get a feel for the problem; they explored how the 
criteria given in the activity could be represented and began to explore how 
the path size related to the pond size. In their first three trials (Figure 1a-c) 
they focused on what it meant for the path to surround the pond. They used 
the information from the first two partially successful trials (Figure 1a-b) to 
inform their third trial (Figure 1c). This is similar way to in which Papert 
(1980) described children using the outcomes from their programming in 
LOGO to fix bugs in code. 
The girls’ provisional use of representation during the entry phase seemed to 
impact on their capacity to work with mathematical uncertainty and to adopt 
a fallibilist approach. Any trials that resulted in failure to meet the criteria set 
out in the activity, for example those depicted in Figure 1a and 1b did not 
appear to decrease their engagement or persistence with the activity. Their 
capacity to work with mathematical uncertainty facilitated their self-
regulation and the application of their learning from apparently unsuccessful 

a b d c 

Figure 1: entry phase trials 
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trials. Emily and Lucy showed no indications of fear, anxiety, bewilderment 
or reticence that can accompany the beginning of mathematical exploration, 
when least is known and understood about the problem. Conversely, they 
seemed highly engaged; they were leaning forwards, constantly exploring the 
parameters of the problem through their manipulation of the Cuisenaire rods 
and they alternated between quiet individual construction of examples and 
paired dialogue to share and develop thinking. The girls portrayed a relaxed 
appearance during the entry phase; their approach had a sense of playfulness 
and exploration that could be likened to the unstructured play that Dienes 
(1964) describes in his Dynamic Principle and this seemed to enable them to 
experience mathematical uncertainty in a positive way.  
During the construction of their third trial, the pair created an ordered 
arrangement of all ten Cuisenaire rods to serve as a reference of relative 
lengths and support selection (top right of Figure 1c). In so doing, they 
noticed that they had selected consecutive rods to create the 62 pond and its 
path. This led them to form the conjecture that began to articulate the 
relationship between the two dependent variables: 

Lucy: I think it will be if you use 1 [for the pond] then it will be 2 [for the 
path], if you use 2 then it’s going to be 3, so it’s [the path] going to 
be 1 higher than your square number 

By the end of the entry phase they had constructed and ordered four 
examples (Figure 1d). They appeared to create each example by randomly 
selecting a Cuisenaire rod and using this as the basis to create one example; 
this use of random specialisation typifies the entry phase trials (Mason et al., 
2010).  This facilitated cognitive developments that enabled the girls to 
notice and formulate conjectures about the emerging patterns between the 
width of the pond and side length of path and to begin to articulate this 
relationship. 
Hence, during the entry phase, the provisional way in which the girls used 
representations seemed to foster the emergence of affectively enabling 
responses and this enabled cognitive developments in mathematical 
reasoning. The impact of the girls’ provisional use of representation during 
the entry phase is depicted in Figure 2. 

The impact of the intervention in the attack phase 
The transition to the attack phase was indicated by the girls’ use of 
systematic specialisation (Mason et al., 2010). Having organised the data 
generated through random specialisation into an ordered sequence (Figure 

Figure 2: impact of the intervention during the entry phase 

Cognitive 
development 

Intervention: provisional 
use of representation 

Enabling affective 
response 
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1d), the girls then used the provisional nature of their representations to 
create gaps between the examples, apparently to identify and accommodate 
missing data. They then represented all the ponds in an ordered sequence 
from 12 to 92 using Cuisenaire rods (Figure 3). 

The girls then switched to a more permanent representation in the form of a 
table (Figure 4). This representation does not simply illustrate total amounts 
relating to pond size and path lengths. Rather, it includes significant detail 
relating to the mathematical structures that underpin the relationship between 
the dependent variables of pond size and path length. Each example of the 
pond described its width squared, its total value and the odd/even property of 
this total. Each example of the path is similarly described by side length 
multiplied by 4, the total value of the path length and the even nature of these 
totals. The girls also noted that each total was a multiple of 4. Interestingly, 
they realised that their recording had not been totally consistent in 
representing the x4 aspect of the path side length and this led them to 
underline the x4 component. Whilst there was no evidence in this lesson that 
the girls became overtly stuck, and hence no necessity to overcome this, they 
did persevere in formulating and articulating the reasoning for the patterns 
they observed. Emily’s original response to the challenge of explaining the 
patterns they had identified resulted in a sentence that she was initially unable 
to complete:  

Emily: All the paths are in the four times table. They have to be in the four 
times table because…  

The girls persisted and utilised their understanding of the structures they had 
identified to formulate their reasoning for the observable patterns. This is 
captured on the right of Figure 4. In the post-lesson interview, the girls re-
visited this:  

13 Emily: We noticed about the path, because there’s 4 sides to the 
path, we need 4 sides of the path, so you need to times it by 
whatever number the length of the path is. So then it’s the 4 
times table because there are 4 sides and all of them, the 
numbers are even because they are all in the 4 times table 

69 Lucy: Because it expands so you need to add 4 each time you go up 

Figure 3: systematic representation of ponds with widths 1-9 
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The diagram on the right of Figure 4 supports the reasoning expressed in line 
69. In the interview, the girls re-created this image using Cuisenaire rods; 
Figure 5 shows how the path surrounding the 12 pond is positioned on top of 
the path surrounding the 22 pond with the gaps at each corner filled by four 
rods, each of length 1. There are similarities between the representations 
drawn in Figure 4 and constructed in Figure 5 and the girls’ second trial 
(Figure 1b); the initial provisional explorations using the Cuisenaire rods, and 
in particular the example in Figure 1b seems to have helped the girls to 
understand the structures underpinning the growth of the path size. This 
understanding enabled Lucy to articulate the reasoning in line 69.  

The depth of understanding and the extent of the reasoning that the girls 
achieved resulted in positive affective responses. As in the entry phase, both 
girls remained highly engaged in the activity throughout the attack phase and 
took every opportunity presented to talk with the teacher about their findings 
and seemed eager to share the reasoning that they were constructing.  

Figure 4: Lucy and Emily’s table of findings 

Figure 5: representations created to support reasoning in line 69 
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In the evaluation meeting following the Research Lesson, the teacher 
reported the impact of the girls’ provisional use of representations during the 
attack phase on their cognitive and affective domains:  

18 Teacher: I think [the provisional use of representation] helped them 
explain their reasoning more and therefore that helped them 
sustain their interest because they could explain more, 
because they had something to work from, to explain with. 
Their level of reasoning was amazing. 

96 Teacher: [Lucy’s] very proud of the work she’s done [in the project]. I 
only have to mention it and a smile spreads across her face. 

108 Teacher: I have seen some improvement in [Emily’s] perseverance and 
resilience […] in the past she would very much continue to 
follow a path even though it was wrong […]. She’s been able 
to stop mid way and realise it’s wrong and have to go back to 
the beginning. 

In line 18, the teacher exclaims about the level of the girls reasoning. In the 
baseline lesson, the girls were able to notice and articulate patterns, but not 
reason about why these occurred, hence there was a significant contrast with 
the extent and depth of their reasoning between the baseline lesson and the 
second research lesson.  
The teacher also makes two connections in line 18. First, she makes a link 
between the girls’ provisional use of representation and their articulation of 
mathematical reasoning. Second, she perceives that the positive cognitive 
developments contributed to the girls’ sustained engagement and curiosity. 
The impact on Lucy’s affective domain appeared to continue beyond the 
Research Lesson. Lucy’s apparent sense of pride (line 96), suggests that she 
may have experienced developments in mathematical intimacy; that she was 
emotionally engaged and achieved a sense of satisfaction and self-worth 
through her cognitive mathematical activity (DeBellis and Goldin, 2006). 
Line 108 suggests that Emily may have increased her capacity to actively 
self-regulate (Malmivuori, 2006); this perhaps arises from developments in 
her capacity to work with mathematical uncertainty which may have arisen 
through working in a provisional way. 
It appears that the provisional use of representations in the attack phase 
impacts first on the cognitive domain and second on the affective domain; a 
reversal of the processes emerging in the entry phase. This relationship is 
depicted in Figure 6. 
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CONCLUSION AND NEXT STEPS 

This study sought to develop a practical intervention to improve children’s 
perseverance in mathematical reasoning. The girls’ provisional use of 
Cuisenaire rods appeared to have an enabling affective impact during the 
entry phase. This facilitated cognitive developments in reasoning as it 
supported them to behave in an exploratory way, to make and learn from 
trials, work with mathematical uncertainty and begin to formulate 
conjectures. In the attack phase, their provisional use of representation 
seemed to enable the girls to develop systematic approaches to their creation 
and organisation of trials. This led to their noticing patterns, understanding 
the underpinning mathematical structures, and using this to persevere in 
formulating reasoning. It seems that positive bidirectional interplay (Di 
Martino and Zan, 2013b) between affect and cognition, facilitated by the 
intervention, resulted in improved perseverance in mathematical reasoning. A 
tentative analytic framework detailing these interactions and synthesising 
Figures 2 and 6, is depicted in Figure 7.  

In the next phase of this research, I plan to work with two classes of children 
aged 10-11 in different schools to further test the impact of the intervention 
on children’s perseverance in mathematical reasoning. 
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Appendix 3.1: Affordances of mathematical activities in each observed 
lesson 

The cognitive affordances of each activity are detailed in the following four tables. The 

affective affordances and potential impact on children’s perseverance in mathematical 

reasoning were the same in each lesson. These are detailed in the final table in this 

appendix. 

Main study baseline lesson: Magic Vs (NRICH, 2015a) (no intervention applied) 

Activity 
summary 

 

Arrange	
  the	
  numbers	
  1–5	
  in	
  a	
  V	
  arrangement	
  so	
  that	
  each	
  arm	
  of	
  the	
  V	
  
sums	
  to	
  the	
  same	
  total.	
  For	
  example:	
  

Potential 
cognitive 
affordances 

Adding	
  1-­‐digit	
  numbers.	
  
Random	
  specialisation	
  to	
  arrange	
  the	
  numbers	
  in	
  V	
  to	
  create	
  trials.	
  
Criterion	
  to	
  only	
  use	
  numbers	
  1–5	
  accurately	
  applied.	
  
Notice	
  and	
  articulate	
  emerging	
  patterns	
  about	
  the	
  layout	
  of	
  the	
  
numbers	
  to	
  create	
  arms	
  with	
  the	
  same	
  total.	
  
Structural	
  awareness:	
  importance	
  of	
  number	
  shared	
  by	
  both	
  arms.	
  
Systematic	
  specialising	
  in	
  the	
  positioning	
  of	
  the	
  base	
  number.	
  
Form	
  and	
  test	
  conjectures	
  and	
  generalisations	
  about	
  how	
  to	
  arrange	
  the	
  
numbers	
  according	
  to	
  their	
  odd/even	
  property.	
  
Artful	
  specialisation,	
  based	
  on	
  the	
  location	
  of	
  odd/even	
  numbers,	
  to	
  test	
  
conjecture.	
  
Form	
  convincing	
  arguments	
  about	
  how	
  to	
  position	
  the	
  numbers	
  in	
  
successful	
  solutions	
  based	
  on	
  their	
  odd/even	
  property	
  and	
  the	
  greater	
  
number	
  of	
  odd	
  than	
  even	
  numbers	
  in	
  the	
  set	
  1–5.	
  
Form	
  generalisation	
  about	
  any	
  set	
  of	
  5	
  consecutive	
  numbers,	
  anchored	
  
in	
  odd/even	
  properties	
  of	
  the	
  set.	
  

 

  

1 

5 

3 

4 

2 
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Research Lesson 1: Addition pyramids 

Description 

Place	
  the	
  numbers	
  1,	
  3,	
  4	
  
and	
  5	
  in	
  the	
  bottom	
  row	
  of	
  
the	
  addition	
  pyramid.	
  
Explore	
  what	
  happens	
  in	
  
the	
  pyramid	
  with	
  different	
  
arrangements	
  of	
  the	
  
numbers	
  in	
  the	
  base	
  row.	
  

Intervention	
   Children	
  provided	
  with	
  Numicon	
  and	
  number	
  cards	
  that	
  can	
  be	
  used	
  in	
  
a	
  provisional	
  way	
  to	
  arrange	
  and	
  re-­‐arrange	
  numbers	
  in	
  the	
  base	
  row.	
  

Potential	
  
affordances	
  
from	
  
intervention	
  

Use	
  of	
  number	
  cards	
  to	
  provisionally	
  order	
  and	
  re-­‐order	
  numbers	
  in	
  
the	
  base	
  row.	
  
Use	
  of	
  number	
  cards	
  to	
  fix	
  the	
  base	
  numbers	
  as	
  1,	
  3,	
  4	
  &	
  5.	
  
Use	
  of	
  Numicon	
  to	
  draw	
  attention	
  to	
  odd/even	
  number	
  properties.	
  

Potential	
  
cognitive	
  
affordances	
  

Adding	
  1	
  and	
  2	
  digit	
  numbers.	
  
Random	
  specialisation	
  in	
  the	
  ordering	
  of	
  base	
  numbers.	
  
Criterion	
  that	
  base	
  numbers	
  can	
  only	
  be	
  1,	
  3,	
  4	
  &	
  5	
  accurately	
  applied.	
  
Notice	
  and	
  articulate	
  emerging	
  patterns	
  in	
  the	
  pyramid	
  totals	
  in	
  
relation	
  to	
  the	
  order	
  of	
  the	
  base	
  numbers.	
  
Systematic	
  specialisation	
  in	
  the	
  ordering	
  of	
  base	
  numbers.	
  
Form	
  and	
  test	
  conjectures	
  and	
  generalisations	
  about	
  how	
  to	
  order	
  the	
  
base	
  numbers	
  to	
  create	
  specific	
  pyramid	
  totals.	
  
Artful	
  specialisation,	
  based	
  on	
  the	
  location	
  of	
  odd/even	
  numbers,	
  to	
  
test	
  conjecture.	
  
Form	
  convincing	
  argument	
  about	
  creating	
  the	
  biggest/smallest	
  total	
  
based	
  on	
  the	
  order	
  of	
  the	
  base	
  numbers	
  according	
  to	
  size.	
  
Form	
  generalisation	
  about	
  how	
  to	
  order	
  any	
  set	
  of	
  base	
  numbers	
  to	
  
generate	
  the	
  largest/smallest	
  total.	
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Research	
  Lesson	
  2:	
  Paths	
  around	
  a	
  square	
  pond	
  

Description	
   A	
  square	
  pond	
  is	
  surrounded	
  by	
  a	
  path	
  that	
  is	
  1	
  unit	
  wide.	
  Explore	
  what	
  
happens	
  as	
  the	
  pond	
  changes	
  size.	
  

Intervention	
   Children	
  provided	
  with	
  Cuisenaire	
  rods	
  that	
  can	
  be	
  used	
  in	
  a	
  
provisional	
  way	
  to	
  represent	
  the	
  pond	
  and	
  path.	
  

Potential	
  
affordances	
  
from	
  
intervention	
  

Cuisenaire	
  rods	
  to	
  represent	
  and	
  re-­‐present	
  square	
  ponds.	
  
Cuisenaire	
  rods	
  to	
  represent	
  and	
  re-­‐present	
  paths	
  around	
  square	
  
ponds.	
  
Systematic	
  re-­‐ordering	
  of	
  Cuisenaire	
  pond	
  constructions.	
  
Identification	
  of	
  missing	
  examples	
  to	
  create	
  full	
  set	
  of	
  systematically	
  
ordered	
  examples.	
  
Visibility	
  of	
  structure	
  of	
  square	
  as	
  an	
  area	
  and	
  square	
  as	
  a	
  perimeter.	
  
Patterns	
  and	
  structures	
  emerging	
  from	
  use	
  of	
  Cuisenaire	
  rods	
  used	
  to	
  
support	
  creation	
  of	
  written	
  table	
  of	
  pond	
  and	
  path	
  sizes.	
  

Potential	
  
cognitive	
  
affordances	
  

Applying	
  understanding	
  of	
  square	
  as	
  an	
  area	
  and	
  square	
  as	
  a	
  perimeter.	
  
Random	
  specialisation	
  in	
  creating	
  a	
  square	
  pond	
  surrounded	
  by	
  a	
  
square	
  path.	
  
Notice	
  and	
  articulate	
  emerging	
  patterns	
  in	
  structure	
  of	
  ponds	
  and	
  
paths.	
  
Systematic	
  specialisation	
  in	
  creating	
  a	
  square	
  pond	
  surrounded	
  by	
  a	
  
square	
  path.	
  
Form	
  and	
  test	
  conjectures	
  about	
  how	
  to	
  physically	
  construct	
  next	
  pond.	
  
Form	
  conjectures	
  and	
  generalisations	
  about	
  how	
  to	
  construct	
  any	
  pond.	
  
Form	
  convincing	
  arguments	
  about	
  why	
  the	
  path	
  size	
  increases	
  by	
  4	
  
when	
  the	
  pond	
  width	
  increases	
  by	
  1.	
  Arguments	
  anchored	
  in	
  
• understanding	
  of	
  concept	
  of	
  square	
  applied	
  to	
  area:	
  need	
  for	
  x	
  rods	
  

of	
  x	
  length	
  
• concept	
  of	
  square	
  applied	
  to	
  perimeter:	
  need	
  for	
  4	
  rods	
  of	
  length	
  

x+1	
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Research	
  Lessons	
  3:	
  More	
  numbers	
  in	
  the	
  ring	
  (NRICH,	
  2016)	
  	
  

Description	
  

Choose	
  four	
  numbers	
  from	
  the	
  numbers	
  from	
  1	
  to	
  9	
  
and	
  arrange	
  them	
  in	
  the	
  boxes	
  in	
  the	
  ring	
  so	
  that	
  the	
  
differences	
  between	
  adjacent	
  numbers	
  are	
  odd.	
  
What	
  if	
  the	
  ring	
  had	
  3	
  or	
  5	
  or	
  6	
  boxes?	
  
	
  
	
  
	
  

Interventions	
  

Children	
  provided	
  with	
  number	
  cards	
  and	
  blank	
  cards	
  that	
  can	
  be	
  
arranged	
  in	
  a	
  provisional	
  way	
  in	
  the	
  ring,	
  mini-­‐whiteboards	
  and	
  plain	
  
A4	
  paper.	
  
Activity	
  embedded	
  a	
  specific	
  focus	
  on	
  generalising.	
  
School	
  3,	
  children	
  provided	
  with	
  additional	
  time	
  by	
  allocating	
  two	
  
consecutive	
  lessons	
  to	
  two	
  closely	
  related	
  activities	
  (More	
  numbers	
  in	
  
the	
  ring	
  and	
  Number	
  differences).	
  

Potential	
  
affordances	
  
from	
  
interventions	
  

Number	
  cards	
  to	
  place	
  and	
  re-­‐arrange	
  with	
  ease	
  and	
  to	
  enable	
  swift	
  
generation	
  of	
  solutions.	
  

Potential	
  
cognitive	
  
affordances	
  

Finding	
  the	
  difference	
  between	
  1	
  digit	
  numbers.	
  
Random	
  specialisation	
  to	
  arrange	
  the	
  numbers	
  to	
  create	
  initial	
  
successful	
  solution(s).	
  
Criterion	
  that	
  only	
  the	
  numbers	
  1–9	
  can	
  be	
  used	
  applied	
  accurately.	
  
Notice	
  and	
  articulate	
  emerging	
  patterns	
  in	
  locations	
  of	
  properties	
  of	
  
odd/even	
  numbers	
  successful	
  solutions.	
  
Notice	
  and	
  articulate	
  emerging	
  patterns	
  of	
  when	
  solutions	
  were	
  
impossible.	
  
Systematic	
  specialisation	
  in	
  positioning	
  the	
  numbers	
  based	
  on	
  their	
  
odd/even	
  property	
  to	
  create	
  solutions.	
  
Form	
  and	
  test	
  conjectures	
  about	
  how	
  to	
  construct	
  successful	
  solutions	
  
based	
  on	
  the	
  location	
  of	
  odd	
  and	
  even	
  numbers.	
  
Artful	
  specialisation,	
  based	
  on	
  the	
  location	
  of	
  odd/even	
  numbers,	
  to	
  
test	
  conjecture.	
  
Form	
  convincing	
  arguments	
  about	
  why	
  odd	
  numbers	
  need	
  to	
  be	
  
located	
  adjacent	
  to	
  even	
  numbers	
  when	
  the	
  ring	
  comprises	
  an	
  even	
  
number	
  of	
  boxes.	
  
Form	
  arguments	
  about	
  why	
  no	
  solutions	
  are	
  possible	
  in	
  rings	
  
comprising	
  an	
  odd	
  number	
  of	
  numbers.	
  
Arguments	
  anchored	
  in	
  the	
  odd	
  difference	
  between	
  odd	
  and	
  even	
  
numbers	
  and	
  an	
  even	
  number	
  of	
  numbers	
  to	
  prevent	
  two	
  numbers	
  of	
  
the	
  same	
  odd/even	
  property	
  being	
  adjacent.	
  
Form	
  generalisation	
  about	
  the	
  odd/even	
  composition	
  of	
  the	
  selection	
  
of	
  numbers	
  in	
  successful	
  solutions.	
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Research	
  Lessons	
  3	
  and	
  4:	
  Number	
  differences	
  (NRICH,	
  2015b)	
  

Description	
  

Arrange	
  the	
  numbers	
  from	
  1	
  to	
  9	
  in	
  the	
  squares	
  on	
  
the	
  adjacent	
  grid	
  so	
  that	
  the	
  difference	
  between	
  
joined	
  squares	
  is	
  odd.	
  
	
  
	
  
	
  

Interventions	
  

Children	
  provided	
  with	
  number	
  cards	
  and	
  blank	
  cards	
  that	
  can	
  be	
  
arranged	
  in	
  a	
  provisional	
  way	
  in	
  the	
  3×3	
  grid,	
  a	
  sheet	
  printed	
  with	
  12	
  
blank	
  3×3	
  grids,	
  mini-­‐whiteboards	
  and	
  plain	
  A4	
  paper.	
  
Activity	
  embedded	
  a	
  specific	
  focus	
  on	
  generalising.	
  
School	
  2:	
  children	
  provided	
  with	
  additional	
  time	
  by	
  allocating	
  two	
  
consecutive	
  lessons	
  to	
  one	
  activity.	
  
School	
  3:	
  children	
  provided	
  with	
  additional	
  time	
  by	
  allocating	
  two	
  
consecutive	
  lessons	
  to	
  two	
  closely	
  related	
  activities	
  (More	
  numbers	
  in	
  
the	
  ring	
  and	
  Number	
  differences).	
  

Potential	
  
affordances	
  
from	
  
interventions	
  

Number	
  cards	
  to	
  place	
  and	
  re-­‐arrange	
  with	
  ease	
  and	
  to	
  enable	
  swift	
  
generation	
  of	
  solutions.	
  
Blank	
  cards	
  that	
  could	
  be	
  written	
  on	
  and	
  used	
  to:	
  
• Represent	
  a	
  new	
  set	
  of	
  9	
  consecutive	
  numbers,	
  eg	
  2–10	
  
• Represent	
  the	
  generalised	
  odd	
  or	
  even	
  property	
  of	
  a	
  number.	
  

Potential	
  
cognitive	
  
affordances	
  

Finding	
  the	
  difference	
  between	
  1	
  digit	
  numbers.	
  
Random	
  specialisation	
  to	
  arrange	
  the	
  numbers	
  to	
  create	
  initial	
  
successful	
  solution(s).	
  
Criterion	
  that	
  only	
  the	
  numbers	
  1–9	
  can	
  be	
  used	
  applied	
  accurately.	
  
Notice	
  and	
  articulate	
  emerging	
  patterns	
  in	
  locations	
  of	
  properties	
  of	
  
odd/even	
  numbers	
  successful	
  solutions.	
  
Systematic	
  specialisation	
  in	
  positioning	
  the	
  odd	
  numbers	
  to	
  create	
  
solutions.	
  
Form	
  and	
  test	
  conjectures	
  about	
  how	
  to	
  construct	
  successful	
  solutions	
  
based	
  on	
  the	
  location	
  of	
  odd	
  and	
  even	
  numbers.	
  
Artful	
  specialisation,	
  based	
  on	
  the	
  location	
  of	
  odd/even	
  numbers,	
  to	
  
test	
  conjecture.	
  
Form	
  convincing	
  arguments	
  about	
  why	
  the	
  odd	
  numbers	
  need	
  to	
  be	
  
located	
  in	
  the	
  middle	
  and	
  corners.	
  
Arguments	
  anchored	
  in	
  the	
  difference	
  between	
  odd	
  and	
  even	
  numbers	
  
and	
  the	
  greater	
  number	
  of	
  odd	
  than	
  even	
  numbers	
  in	
  the	
  set	
  1–9.	
  
Form	
  generalisation	
  about	
  any	
  set	
  of	
  9	
  consecutive	
  numbers,	
  anchored	
  
in	
  odd/even	
  properties	
  of	
  the	
  set.	
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Affective	
  affordances	
  and	
  potential	
  impact	
  on	
  perseverance	
  in	
  mathematical	
  
reasoning	
  in	
  all	
  lessons	
  (BL,	
  RL1,	
  RL2,	
  RL3,	
  RL4)	
  

Potential	
  
affective	
  
affordances	
  

Be	
  at	
  ease	
  with	
  unsuccessful	
  trials.	
  
Work	
  with	
  mathematical	
  uncertainty.	
  
Explore	
  in	
  a	
  ‘playful’	
  way.	
  
Potential	
  feelings	
  of:	
  
• uncertainty	
  
• puzzlement	
  
• frustration	
  
• curiosity	
  
• encouragement	
  
• satisfaction	
  
• pleasure	
  
• pride	
  
Exploration	
  directed	
  by	
  children,	
  enabling	
  mathematical	
  intimacy	
  and	
  
potential	
  integrity.	
  	
  

Potential	
  
impact	
  on	
  
perseverance	
  

Able	
  to	
  make	
  a	
  start	
  and	
  engage	
  in	
  activity	
  with	
  potential	
  for	
  
mathematical	
  reasoning.	
  
Self-­‐regulatory	
  processes	
  to	
  facilitate	
  progress	
  in	
  reasoning.	
  
Overcoming	
  instances	
  of	
  being	
  stuck	
  or	
  unsure.	
  
Effort	
  and	
  attention	
  focused	
  on	
  creating	
  systematic	
  trials	
  and	
  pattern	
  
spotting.	
  
Effort	
  and	
  attention	
  focused	
  on	
  formation	
  of	
  generalisations	
  and	
  
convincing	
  arguments.	
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Appendix 3.2: Example of a coded lesson observation transcription 
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Appendix 3.3: Example of summarised data for one child following one 
observed lesson 

Summary	
  Michelle:	
  Research	
  Lesson	
  2	
  	
  
Planned	
  intervention:	
  
Representations	
  that	
  could	
  be	
  used	
  in	
  a	
  
provisional	
  way	
  

Any	
  additional	
  intervention	
  applied	
  by	
  
teacher:	
  
None	
  

 Observation	
  notes	
  in	
  black	
  font	
   Interview	
  notes	
  in	
  blue	
  font	
  

Cognition 

 

Evidence	
  of	
  systematic	
  formation	
  of	
  trials	
  and	
  systematic	
  ordering	
  of	
  
previously	
  constructed	
  trials	
  
Evidence	
  of	
  noticing	
  the	
  pattern	
  of	
  growth	
  in	
  the	
  side	
  length	
  of	
  the	
  path	
  
Evidence	
  of	
  using	
  the	
  structure	
  of	
  the	
  path	
  to	
  calculate	
  its	
  total	
  (3,6,9,12)	
  
Difficulty	
  in	
  identifying	
  the	
  relevant	
  properties	
  of	
  a	
  square	
  to	
  check	
  
construction	
  
No	
  evidence	
  of	
  conjecturing,	
  generalisation	
  nor	
  convincing	
  
Evidence	
  of	
  understanding	
  of	
  colour	
  and	
  numerical	
  patterns	
  in	
  sequence	
  
Evidence	
  of	
  empirical	
  and	
  structural	
  generalisation	
  

Conation Study	
  group	
  do	
  not	
  engage	
  in	
  discussion	
  about	
  how	
  to	
  explain	
  how	
  big	
  
each	
  pond	
  is	
  
Study	
  group	
  do	
  not	
  respond	
  to	
  teacher	
  questions	
  in	
  initial	
  input	
  although	
  
they	
  appear	
  engaged	
  
High	
  levels	
  of	
  engagement	
  throughout	
  first	
  48	
  minutes	
  of	
  lesson	
  
Disengagement	
  (and	
  just	
  sitting)	
  for	
  final	
  12	
  minutes	
  of	
  lesson	
  when	
  
asked	
  to	
  create	
  written	
  record	
  of	
  sequence	
  
Found	
  walkabout	
  to	
  see	
  peers’	
  work	
  inspiring	
  (Liljedahl’s	
  fill	
  air	
  with	
  
ideas)	
  
Two	
  instances	
  of	
  engagement	
  with	
  own	
  construction	
  during	
  whole	
  class	
  
discussion,	
  one	
  of	
  which	
  could	
  be	
  interpreted	
  as	
  avoiding	
  opportunities	
  
to	
  engage	
  in	
  reasoning	
  
Awareness	
  of	
  being	
  stuck	
  when	
  asked	
  to	
  create	
  written	
  record	
  at	
  board	
  

Affect Expression	
  of	
  enjoyment	
  related	
  to	
  the	
  use	
  enactive	
  of	
  representations	
  

Representation Initially	
  whole	
  study	
  group	
  begin	
  task	
  by	
  preparing	
  to	
  make	
  written	
  
representation	
  as	
  first	
  trial	
  
Provisional	
  use	
  of	
  representation	
  to	
  make	
  random	
  then	
  systematic	
  trials	
  
and	
  to	
  order	
  trials	
  
Disengagement	
  from	
  activity	
  when	
  asked	
  to	
  create	
  written	
  record	
  
Expresses	
  need	
  for	
  enactive	
  representation	
  to	
  complete	
  investigation	
  
With	
  scaffolding,	
  creates	
  written	
  representation	
  which	
  evidences	
  
empirical	
  and	
  structural	
  generalisation	
  

Next steps for 
RL3 

Continue	
  to	
  foster	
  high	
  levels	
  of	
  engagement	
  by	
  providing	
  ease	
  of	
  
creating	
  trials	
  
Continue	
  to	
  support	
  systematic	
  specialisation	
  through	
  being	
  able	
  to	
  re-­‐
arrange	
  trials	
  
Provide	
  a	
  context	
  that	
  gives	
  the	
  reason	
  for	
  generalising	
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Appendix 3.4: Example of information email and letter sent to teachers 
interested in being part of the research 

Email to potential Teachers 

Dear 

I very much hope that all is well with you and that you are enjoying teaching. 

In the coming academic year, I’m hoping to work with teachers in years 5 or 6 who 
have expertise in mathematics for the final phase of my doctoral research — and I’d 
be really delighted to work with you. I’ve attached a more formal letter that gives a 
bit of information about the project. Please do get in touch, it will be really good to 
catch up with you whether or not this is something that you would be interested in. 

Very best wishes 

Alison 

 

Letter attached to email 

20 May 2014 

Dear 

I am planning a research project as part of my doctoral studies to explore 
approaches that primary class teachers can adopt to improve children’s 
perseverance in mathematical reasoning. I am looking to work with two teachers 
(from different schools) who teach in year 6 and I wondered if involvement in a 
project focusing on this issue might be of interest to you. 

The project would take place throughout the academic year 2014–15 and would 
involve us working together to plan and evaluate children’s learning in five 
mathematics lessons across the year. The lessons could focus on any 
mathematical topic but would provide the children with opportunities for 
mathematical reasoning. I would like to observe a small group of children during 
each of these lessons and then talk to them for a short time (10–15 minutes) 
following each lesson. 

If you would like to find out more about what the project will entail or if think you may 
be interested to take part, please contact me. I am very happy to talk with you and 
your headteacher. 

I very much understand that this may not suit your focus and priorities for the 
coming year. If this is the case, perhaps you could let me know and I wish you every 
success in your work throughout 2014–15 and your on-going championing of 
mathematics! 

With best wishes 

Alison Barnes 
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Appendix 3.5: Information sheets and consent form for schools and 
teachers 

Research Project Information for Staff at [School] 
My name is Alison Barnes and I am engaged in doctoral research in primary mathematics 
education at [HEI Name]. I would like to carry out some research throughout the academic year 
2014–15 with [Teacher Name] and children in year 6. The focus for this project is to explore 
how primary teachers can create opportunities that enable children to further develop their 
perseverance in mathematical reasoning. This research will culminate in the presentation of a 
thesis. 

In this project, I plan to: 

• Work with [Teacher Name] to try to create opportunities in mathematics lessons for 
children in year 6 to increase their perseverance. 

• Observe and audio record small groups of children as they work during five mathematics 
lessons. 

• Talk to pairs/small groups of children following the observed lessons. The discussions will 
last up to 15 minutes and will be audio recorded. 

• Make copies of children’s recorded work and photograph their practical work. 
• Work with [Teacher Name] and maybe a teacher from another school to plan five 

mathematics lessons, four of which will comprise pedagogic interventions. 
• Evaluate the impact of each lesson on children’s perseverance in mathematical reasoning. 
• The planning and evaluation discussions can take place in the same meeting and these 

will take around 1 hour for each of the lessons 
• Evaluate the project with [Teacher Name]. This will take around 45 minutes and will be 

audio recorded. 
• Send [Teacher Name] transcripts of the notes from the observation of children and 

interviews with children to support planning and evaluation. 
• Send [Teacher Name] a draft of the analysis for information and feedback. 

 
I would like to ask for the consent of the parents/carers for their children to take part in this 
research. To give this consent, I will provide parents with an information sheet and would like to 
request that they sign and return a Consent Form to [Teacher Name] prior to the first research 
lesson in early September 2014. 

Important points: 

• The names of children, teacher and school will be not be used in the research report. 
• In addition to the parents giving consent for their child to take part, I will also ask the 

children if they are happy to be observed or interviewed by me or have their work 
copied/photographed. They can say no at any stage. 

• One electronic copy of each audio recording will be saved in a password-protected file in a 
web-based cloud and only I will have access to this. These files will be deleted at the end 
of the research process; this is likely to be three years from now. 

• [Teacher Name] will have the opportunity to read all the observation and interview 
transcripts and also a copy of the final work. 

• I am a qualified teacher and have a valid DBS certificate for this locality. 
 

Please don’t hesitate to contact me or my research supervisor if you have any questions or 
comments. 

Thank you 

Alison Barnes 

12 June 2014 

Contact details 
Researcher:   Alison Barnes, Name of HEI, email address provided to school 
Research Supervisor:  Name, Name of HEI and email address provided to school 
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Teacher Consent Form 
Research focus: 
 

Exploration of the development of children’s perseverance 
in mathematical reasoning 

Name of researcher: Alison Barnes, HEI Name 

• I agree to take part in this research, which is to explore how children can be 
supported to develop perseverance in mathematics. 
 

• I have read the information sheet and I understand what is involved. 
 

• I am aware that I will be asked to: 
o Seek informed consent from all year 6 parents 

o Liaise with the researcher to support the selection of four children 

o Take part in five meetings, which may be with a colleague from another school, 
to plan and evaluate mathematics lessons 

o Teach five mathematics lessons in which children’s learning is observed by the 
researcher 

o Read observation and interview transcripts 

o Take part in a meeting to evaluate the project. This will be audio recorded. 

o Read and edit a transcript of the final evaluation meeting 

• I am aware that the selected children may be asked to: 
o Be observed by the researcher when taking part in mathematical activities 

during five mathematics lessons. These will be audio recorded. 
o Allow for their work to be photocopied or photographed. 
o Take part in a short paired/group discussion about the mathematics lesson. 

This will be audio-recorded. 
 
• I understand that all names of individuals and the school will be not be used in the 

research report. 
 

• I understand that I am free to withdraw from the study at any time without giving a 
reason, and to request the destruction of any data that have been gathered, up to 
the point at which data are aggregated for analysis. 

Name (please print) ……………………………………………………………………… 

Signed …………………………………………………………………………………………... 

Date ……………………………………………………………………………………………... 
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Appendix 3.6: Information sheet and consent form for parents 

Research Project Information for Parents and Carers 

Dear Parent/Carer 

I would like to ask your permission for your child to take part in a small research project. My 
name is Alison Barnes and I and I am engaged in doctoral research in primary mathematics 
education at [HEI Name]. I would like to carry out some research with [Teacher Name] and 
children in year 6 during 2014–15. The focus for this project is to explore how teachers can 
create opportunities that enable children to further develop their perseverance in 
mathematical reasoning. 

In this project, I plan to: 

a) Work with [Teacher Name] to try to create opportunities for children in year 6 to increase 
their perseverance in mathematics. 

b) Observe, take notes and audio record small groups of children as they work during five 
mathematics lessons. 

c) Talk to small groups of children following the observed lessons. The discussions will last 
up to 15 minutes and will be audio recorded. 

d) Create typed notes of my observations of children working during the lesson (item b) and 
from the discussions after the lessons (item c). These typed notes will only be shared with 
[Teacher Name]. 

e) Make copies of children’s recorded work and photograph their practical work (this will not 
involve taking pictures of the children themselves). 
 

I would like to ask for your consent for your child to take part in this research. To give this 
consent, please sign and return the attached Consent Form by [date] to [Teacher Name]. 

Important points: 

• The names of children and the school will be not be used in the research report. 
• In addition to you giving your consent for your child to take part, I will also ask your child if 

they are happy to be observed or interviewed by me and to have their work 
copied/photographed. They can say no at any stage. 

• I will be the only person who will have access to the audio recordings. These will be 
deleted at the end of the research process; this is likely to be three years from now. 

• I am a qualified teacher and have a valid CRB/DBS certificate. 
If you have any questions, please don’t hesitate to contact me directly or [Headteacher 
Name], [Teacher Name] or my research supervisor. 

Thank you 

Alison Barnes 

9 September 2014 

Contact details 
Researcher:   Alison Barnes, HEI Name, email address 
Research Supervisor:  Supervisor Name, email address  
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Parent/Carer Consent Form 
Research focus: 
 

Exploration of the development of children’s perseverance 
in mathematical reasoning 

Name of 
researcher: 

Alison Barnes, HEI Name 

• I agree that my child may take part in this research, which is to explore how 
children can be supported to develop perseverance in mathematics. 
 

• I have read the information sheet and I understand what is involved. 
 

• I am aware that my child may be asked to: 
o Be observed by the researcher when taking part in mathematical activities 

during a small number of mathematics lessons. These may be audio 
recorded. 

o Allow for his/her work in some mathematics lessons to be photocopied or 
photographed. 

o Take part in a short group discussion about the mathematics lesson. This will 
be audio-recorded. 
 

• I understand that the name of my child and the school will be not be used in the 
research report. 
 

• I understand that my child is free to withdraw from the study at any time during 
and may request the destruction of any data that have been gathered from 
him/her, up to the point at which data are aggregated for analysis. This will not 
disadvantage your child in any way. 

 

Name (please print) ……………………………………………………………………… 

Signed ………………………………………………………………………………………... 

Date …………………………………………………………………………………………... 
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Appendix 4.1: Children’s writing from RL4 

 

Appendix 4.1.1: Ruby's work in RL4 



 241 

 

Appendix 4.1.2: Alice's work in RL4 
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Appendix 4.1.3: Emma's work in RL4 
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Appendix 4.1.4: David's work in RL4 

 

Appendix 4.1.5: Michelle's work in RL4 
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Appendix 4.1.6: Marcus's work in RL4 

 

Appendix 4.1.7: Mary's work in RL4 

 


